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Tutorial Outline

• 10:30 - Welcome and General Overview - Anna Monreale
• 10:35 - Science & Technology for AI Decision Making - Anna Monreale
• 10:40 - Explaining Explanation Methods - Riccardo Guidotti
• 11:20 - Explaining with Knowledge Graphs - Pasquale Minervini
• 11:50 - Explaining Privacy Risks - Anna Monreale
• 12:20 - Visualizing Explanations - Riccardo Guidotti (Salvo Rinzivillo)
• 12:30 - Conclusions and Q&A - Anna Monreale
• 12:40 - Lunch break
• 14:00 - Workshop



Science & Technology for AI 
Decision Making
Anna Monreale, University of Pisa, Pisa



Definitions Oxford Dictionary of  English



What is “Explainable AI” ?

• Explainable-AI explores and investigates methods to produce or 
complement AI models to make accessible and interpretable the 
internal logic and the outcome of the algorithms, making such 
process understandable by humans.
• Explicability, understood as incorporating both intelligibility (“how 

does it work?” for non-experts, e.g., patients or business customers, 
and for experts, e.g., product designers or engineers) and 
accountability (“who is responsible for”).
• 5 core principles for ethical AI:
• beneficence, non-maleficence, autonomy, and justice
• a new principle is needed in addition: explicability



Motivating Examples

• Criminal Justice
• People wrongly denied
• Recidivism prediction
• Unfair Police dispatch

• Finance:
• Credit scoring, loan approval
• Insurance quotes

• Healthcare 
• AI as 3rd-party actor in physician -

patient relationship
• Learning must be done with 

available data: cannot randomize 
cares given to patients!

• Must validate models before use.



Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic 
involved” when “automated (algorithmic) individual decision-making”, including profiling, takes place.

Right of Explanation



Explanation in different AI fields 

• Machine Learning

Auto-encoder
Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-
Based Reasoning Through Prototypes: A Neural Network That Explains 
Its Predictions. AAAI 2018: 3530-3537

Surogate Model
Mark Craven, Jude W. Shavlik: Extracting Tree-Structured 
Representations of Trained Networks. NIPS 1995: 24-30

Feature Importance, Partial Dependence Plot, Individual Conditional Expectation



Explanation in different AI fields 

• Machine Learning
• Computer Vision

Saliency Map
Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been 
Kim: Sanity Checks for Saliency Maps. NeurIPS 2018: 9525-9536

Uncertainty Map
Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for 
Computer Vision? NIPS 2017: 5580-5590



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning

Diagnosis Inference
Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and 
Practice. KR 2012

Abduction Reasoning (in Bayesian Network)
David Poole: Probabilistic Horn Abduction and Bayesian 
Networks. Artif. Intell. 64(1): 81-129 (1993)



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning
• Multi-agent Systems

Agent Strategy Summarization
Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. 
AAMAS 2018: 1203-1207

Explainable Agents
Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-
Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning
• Multi-agent Systems
• NLP

Explainable NLP
Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative 
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning
• Multi-agent Systems
• NLP
• Planning and Scheduling

Human-in-the-loop Planning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning
• Multi-agent Systems
• NLP
• Planning and Scheduling
• Robotics

From Decision Tree to human-friendly information 
Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent 
Robots. AAAI Workshops 2017



Explanation as Machine-Human Conversation

- Humans may have follow-up questions
- Explanations cannot answer all users’ concerns

[Weld and Bansal 2018]



Role-based Interpretability

• End users “Am I being treated fairly?”
“Can I contest the decision?”
“What could I do differently to get a 
positive outcome?”

• Engineers, data scientists: “Is my system 
working as designed?”
• Regulators “ Is it compliant?”

An ideal explainer should model the user 
background. 

[Tomsett et al. 18]

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

“Is the explanation interpretable?” à “To whom is the explanation interpretable?”
No Universally Interpretable Explanations!



Summarizing: the Need to Explain comes from …

• User Acceptance & Trust [Lipton 2016, Ribeiro 2016, Weld and Bansal 2018] 

• Legal
• Conformance to ethical standards, fairness
• Right to be informed [Goodman and Flaxman 2016, Wachter 2017]

• Contestable decisions

• Explanatory Debugging [Kulesza et al. 2014, Weld and Bansal 2018]

• Flawed performance metrics
• Inadequate features
• Distributional drift 



XAI is Interdisciplinary

• For millennia, philosophers have
asked the questions about what
constitutes an explanation, what
is the function of explanations, 
and what are their structure
• [Tim Miller 2018] 
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Explaining Explanation Methods
Riccardo Guidotti, ISTI-CNR, Pisa



A black box is a model, 
whose internals are either 
unknown to the observer or 
they are known but 
uninterpretable by humans.

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box 
models. ACM Computing Surveys (CSUR), 51(5), 93.

What is a Black Box Model?



Needs For Interpretable Models



COMPAS recidivism black bias 



The background bias



Interpretable, Explainable and 
Comprehensible Models



Interpretability

• To interpret means to give or provide the meaning or to explain and 
present in understandable terms some concepts.

• In data mining and machine learning, interpretability is the ability to 
explain or to provide the meaning in understandable terms to a 
human.

- https://www.merriam-webster.com/

- Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2.

https://www.merriam-webster.com/


Dimensions of Interpretability

• Global and Local Interpretability:
• Global: understanding the whole logic of a model
• Local: understanding only the reasons for a specific decision

• Time Limitation: the time that the user can spend for 
understanding an explanation.

• Nature of User Expertise: users of a predictive model may have 
different background knowledge and experience in the task. 
The nature of the user expertise is a key aspect 
for interpretability of a model.

e



Desiderata of an Interpretable Model

• Interpretability (or comprehensibility): to which extent the model 
and/or its predictions are human understandable. Is measured with 
the complexity of the model.

• Fidelity: to which extent the model imitate a black-box predictor.

• Accuracy: to which extent the model predicts unseen instances.

- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

• Fairness: the model guarantees the protection of groups against 
discrimination.
• Privacy: the model does not reveal sensitive information about people.
• Respect Monotonicity: the increase of the values of an attribute either 

increase or decrease in a monotonic way the probability of a record of 
being member of a class.
• Usability: an interactive and queryable explanation is more usable than 

a textual and fixed explanation.

- Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.
- Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on 

privacy preserving data mining. SpringerPlus .
- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

• Reliability and Robustness: the interpretable model should maintain 
high levels of performance independently from small variations of the 
parameters or of the input data.
• Causality: controlled changes in the input due to a perturbation should 

affect the model behavior.
• Scalability: the interpretable model should be able to scale to large 

input data with large input spaces.
• Generality: the model should not require special training or restrictions. 



Recognized Interpretable Models

Linear Model

Rules

Decision Tree



Complexity

• Opposed to interpretability.

• Is only related to the model and not 
to the training data that is unknown.

• Generally estimated with a rough 
approximation related to the size of 
the interpretable model.

• Linear Model: number of non 
zero weights in the model.

• Rule: number of attribute-value 
pairs in condition.

• Decision Tree: estimating the 
complexity of a tree can be hard.

- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
- Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Open the Black Box Problems



Problems Taxonomy



XbD – eXplanation by Design

Input Data

Interpretability 

Black-box System

Transparent System

!𝑦



BBX - Black Box eXplanation
Black-box 
AI System

Explanation Sub-system

Input Data
Explanation

!𝑦



Classification Problem

X = {x1, …, xn}



Model Explanation Problem
Provide an interpretable model able to mimic the overall logic/behavior of 
the black box and to explain its logic.

X = {x1, …, xn}



Outcome Explanation Problem
Provide an interpretable outcome, i.e., an explanation for the outcome of 
the black box for a single instance.

x



Model Inspection Problem
Provide a representation (visual or textual) for understanding either how the 
black box model works or why the black box returns certain predictions more 
likely than others.

X = {x1, …, xn}



Transparent Box Design Problem
Provide a model which is locally or globally interpretable on its own.

X = {x1, …, xn}

x



Categorization

• The type of problem

• The type of black box model that the explanator is able to open

• The type of data used as input by the black box model

• The type of explanator adopted to open the black box



Black Boxes

• Neural Network (NN)
• Tree Ensemble (TE)
• Support Vector Machine (SVM)
• Deep Neural Network (DNN)



Types of Data

Text
(TXT)

Tabular
(TAB)

Images 
(IMG)



Explanators
• Decision Tree (DT)
• Decision Rules (DR) 
• Features Importance (FI)
• Saliency Maps (SM)
• Sensitivity Analysis (SA)
• Partial Dependence Plot (PDP)
• Prototype Selection (PS)
• Activation Maximization (AM)



Reverse Engineering

• The name comes from the fact that we can only observe
the input and output of the black box.
• Possible actions are:
• choice of a particular comprehensible predictor
• querying/auditing the black box with input records 

created in a controlled way using random perturbations
w.r.t. a certain prior knowledge (e.g. train or test)

• It can be generalizable or not:
• Model-Agnostic
• Model-Specific

Input Output



Model-Agnostic vs Model-Specific

independent

dependent



Solving The Model Explanation Problem



Global Model Explainers

• Explanator: DT
• Black Box: NN, TE
• Data Type: TAB

• Explanator: DR
• Black Box: NN, SVM, TE
• Data Type: TAB

• Explanator: FI
• Black Box: AGN
• Data Type: TAB



Trepan – DT, NN, TAB

01 T = root_of_the_tree()
02 Q = <T, X, {}>
03 while Q not empty & size(T) < limit
04 N, XN, CN = pop(Q)
05 ZN = random(XN, CN)
06 yZ = b(Z), y = b(XN)
07 if same_class(y ∪ yZ)
08 continue
09 S = best_split(XN ∪ ZN, y ∪ yZ)
10 S’= best_m-of-n_split(S)
11 N = update_with_split(N, S’)
12 for each condition c in S’
13 C = new_child_of(N)
14 CC = C_N ∪ {c}
15 XC = select_with_constraints(XN, CN)
16 put(Q, <C, XC, CC>)

- Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.

black box 
auditing



RxREN – DR, NN, TAB

- M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012. 
Reverse engineering the neural networks for rule
extraction in classification problems. NPL.

01 prune insignificant neurons
02 for each significant neuron
03 for each outcome
04 compute mandatory data ranges
05 for each outcome
06 build rules using data ranges of each neuron
07 prune insignificant rules
08 update data ranges in rule conditions analyzing error

black box 
auditing



Solving The Outcome Explanation Problem



Local Model Explainers

• Explanator: SM
• Black Box: DNN, NN
• Data Type: IMG

• Explanator: FI
• Black Box: DNN, SVM
• Data Type: ANY

• Explanator: DT
• Black Box: ANY
• Data Type: TAB



Local Explanation

• The overall decision 
boundary is complex
• In the neighborhood of a 

single decision, the 
boundary is simple
• A single decision can be 

explained by auditing the 
black box around the 
given instance and 
learning a local decision.



LIME – FI, AGN, ANY

01 Z = {}
02 x instance to explain 
03 x’ = real2interpretable(x)
04 for i in {1, 2, …, N}
05 zi= sample_around(x’)
06 z = interpretabel2real(z’)
07 Z = Z ∪ {<zi, b(zi), d(x, z)>}
08 w = solve_Lasso(Z, k)
09 return w

- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: 
Explaining the predictions of any classifier. KDD.

black box 
auditing



LORE – DR, AGN, TAB

01 x instance to explain
02 Z= = geneticNeighborhood(x, fitness=, N/2)
03 Z≠ = geneticNeighborhood(x, fitness≠, N/2) 
04 Z = Z= ∪ Z≠
05 c = buildTree(Z, b(Z))
06 r = (p -> y) = extractRule(c, x)
07 ϕ = extractCounterfactual(c, r, x)
08 return e = <r, ϕ>

- Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco Turini, 
and Fosca Giannotti. 2018. Local rule-based explanations of black box decision
systems. arXiv preprint arXiv:1805.10820

r = {age ≤ 25, job = clerk, income ≤ 900} -> deny

Φ = {({income > 900} -> grant),
({17 ≤ age < 25, job = other} -> grant)}

black box 
auditing



Meaningful Perturbations – SM, DNN, IMG

01 x instance to explain
02 varying x into x’ maximizing b(x)~b(x’)
03 the variation runs replacing a region R of x with:

constant value, noise, blurred image
04 reformulation: find smallest R such that b(xR)≪b(x)

- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).

black box 
auditing



SHAP (SHapley Additive exPlanations)

• SHAP assigns each feature an 
importance value for a 
particular prediction by means
of an additive feature
attribution method.
• It assigns an importance value

to each feature that represents
the effect on the model 
prediction of including that
feature

• Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model 
predictions." Advances in Neural Information Processing Systems. 2017.



Solving The Model Inspection Problem



Inspection Model Explainers

• Explanator: SA
• Black Box: NN, DNN, AGN
• Data Type: TAB

• Explanator: PDP
• Black Box: AGN
• Data Type: TAB

• Explanator: AM
• Black Box: DNN
• Data Type: IMG, TXT



VEC – SA, AGN, TAB

• Sensitivity measures are variables 
calculated as the range, gradient, 
variance of the prediction.
• The visualizations realized are 

barplots for the features 
importance, and Variable Effect 
Characteristic curve (VEC) plotting 
the input values versus the (average) 
outcome responses.

- Paulo Cortez and Mark J. Embrechts. 2011. Opening black box data mining models using sensitivity analysis. CIDM.

VEC

feature distribution black box 
auditing



Prospector – PDP, AGN, TAB

• Introduce random perturbations on input values to understand to 
which extent every feature impact the prediction using PDPs.
• The input is changed one variable at a time.

- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).

black box 
auditing



Solving The Transparent Design Problem



Transparent Model Explainers

• Explanators: 
• DR
• DT
• PS

• Data Type: 
• TAB



CPAR – DR, TAB

• Combines the advantages of associative 
classification and rule-based classification. 
• It adopts a greedy algorithm to generate 

rules directly from training data. 
• It generates more rules than traditional 

rule-based classifiers to avoid missing 
important rules. 
• To avoid overfitting it uses expected 

accuracy to evaluate each rule and uses the 
best k rules in prediction.

- Xiaoxin Yin and Jiawei Han. 2003. CPAR: Classification based on predictive association rules. SIAM, 331–335



CORELS – DR, TAB

• It is a branch-and bound algorithm that provides the optimal solution 
according to the training objective with a certificate of optimality.
• It maintains a lower bound on the minimum value of error that each 

incomplete rule list can achieve. This allows to prune an incomplete 
rule list and every possible extension. 
• It terminates with the optimal rule list and a certificate of optimality.

- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. Learning certifiably optimal rule lists. KDD.
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Explaining with Knowledge Graphs
Pasquale Minervini, University College London, London
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Outline

• Knowledge Graphs
• What/Where are they?
• How can they help in XAI?

• Statistical Relational Learning in Knowledge Graphs
• Symbolic (Explainable) Models
• Sub-Symbolic (Black-Box) Models
• Incorporating Symbolic Knowledge in Sub-Symbolic Models



Outline

• Knowledge Graphs
• What/Where are they?
• How can they help in XAI?

• Statistical Relational Learning in Knowledge Graphs
• Symbolic (Explainable) Models
• Sub-Symbolic (Black-Box) Models
• Incorporating Symbolic Knowledge in Sub-Symbolic Models

• Differentiable Reasoning
• Forward Chaining
• Backward Chaining



Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where 
knowledge is encoded by relationships between entities.



Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where 
knowledge is encoded by relationships between entities.



Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where 
knowledge is encoded by relationships between entities.

Drug Prioritization using the semantic properties of a Knowledge Graph, Nature 2019



Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where 
knowledge is encoded by relationships between entities.

subject predicate object

Barack Obama was born in Honolulu

Hawaii has capital Honolulu

Barack Obama is politician of United States

Hawaii is located in United States

Barack Obama is married to Michelle Obama

Michelle Obama is a Lawyer

Michelle Obama lives in United States



Industry-Scale Knowledge Graphs in Google

The Google Knowledge Graph contains more 
than 70 billion assertions describing a billion 
entities and covers a variety of subject matter 
— “things not strings”.

Used for answering factoid queries about 
entities served from the Knowledge Graph.

1 Billion entities, ~70 Billion assertions



The Linked Open Data Cloud

Linked Open Data cloud - over 1200 interlinked 
KGs encoding more than 200M facts about more 
than 50M entities.

Spans a variety of domains, such as Geography, 
Government, Life Sciences, Linguistics, Media, 
Publications, and Cross-domain

Name Entities Relations Types Facts

Freebase 40M 35K 26.5K 637M

DBpedia (en) 4.6M 1.4K 735 580M

YAGO3 17M 77 488K 150M

Wikidata 15.6M 1.7K 23.2K 66M



Knowledge Graphs and Explainable AI

We can use Knowledge Graphs 
for explaining the decisions of 
Machine Learning algorithms, 
such as recommender systems, 
and design machine learning 
models that are less prone to 
capturing spurious correlations
in the data.

• Locally vs. Globally

• Ad-hoc vs. Post-hoc

[Di Noia et al. 2012, Ostuni et al. 2013, Musto et al. 2019]



Knowledge Graphs and Explainable AI

We can use Knowledge Graphs 
for explaining the decisions of 
Machine Learning algorithms, 
such as recommender systems, 
and design machine learning 
models that are less prone to 
capturing spurious correlations
in the data.

• Locally vs. Globally

• Ad-hoc vs. Post-hoc

Freddy Lecue: On The Role of Knowledge Graphs in Explainable 
AI. SWJ 2019

[Bau et al. 2017, Lecue 2019]



Knowledge Graphs and Explainable AI

We can use Knowledge Graphs 
for explaining the decisions of 
Machine Learning algorithms, 
such as recommender systems, 
and design machine learning 
models that are less prone to 
capturing spurious correlations
in the data.

• Locally vs. Globally

• Ad-hoc vs. Post-hoc



Statistical Relational Learning

• Task — model the existence of each triple as
binary random variables indicating whether is in the KG:

• Every realisation of denotes a possible world-modelling allows
predicting triples based on the state of the entire Knowledge Graph.
• Scalability is important - e.g. on Freebase (40M entities), the number of 

variables to represent can be quite large:

xspo = (s, p, o) ∈ ℰ × ℛ × ℰ
yspo ∈ {0,1} xspo

yspo = {1 if xspo ∈ "
0 otherwise

entries in Y ∈ {0,1}|ℰ|×|ℛ|×|ℰ|

Y P (Y)

|ℰ × ℛ × ℰ | > 1019



Types of Statistical Relational Learning Models

• Depending on our assumptions on , we end up with three model classes:
• Latent Feature Models: variables are conditionally independent given

the latent features associated with subject, predicate, and object:

• Observable Feature Models: related to Latent Feature Models, but are now
graph-based features, such as paths linking the subject and the object.
• Graphical Models: variables are not assumed to be conditionally

independent — each can depend on any of the other random variables in .

P (Y)
yspo ∈ {0,1}

Θ

∀xi, xj ∈ ℰ × ℛ × ℰ, xi ≠xj : yi ⊥⊥yj ∣ Θ

Θ

Yyspo

yspo ∈ {0,1}



Conditional Independence Assumption

• Assuming all        variables are conditionally independent allows modelling their 
existence via a scoring function                       representing the likelihood that a 
triple is in the KG, conditioned on the parameters     :

• Scoring Function - depending on the type of features used by we have
two families of models - Observable and Latent Feature Models.

yspo
f (s, p, o ∣ Θ)

Θ

P (Y ∣ Θ) = ∏
s∈ℰ

∏
p∈ℛ

∏
o ∈ℰ

P (yspo ∣ Θ)  if yspo = 1

1 −P (yspo ∣ Θ)  otherwise
 with P (yspo ∣ Θ) = σ (f (s, p, o ∣ Θ))

f ( ⋅ ∣ Θ)



Observable Feature Models - Rule Mining and ILP

Rule Mining and Inductive Logic Programming methods extract rules 
via mining methods, and use them to infer new links.

• Logic Programming (deductive): from facts and rules, infer new facts (First-Order Logic)

• Inductive Logic Programming (ILP): from correlated facts, infer new rules                          (e.g. 
Progol [Muggleton, 1993], Aleph [Srinivasan, 1999], DL-Learner [Lehmann, 2009], FOIL [Quinlan, 

1990], ..)
• Rule Mining: AMIE [Galárraga et al. 2015] is orders of magnitude faster than traditional ILP 

methods, and consistent with the Open World Assumption in Knowledge Graphs:
• Partial Completeness Assumption
• Efficient search space exploration via Mining Operators



Observable Feature Models - Path Ranking Algorithm

Path Ranking Algorithm (PRA) uses length-bounded random walks as 
features between entity pairs for predicting a target relation [Lao et al. 2010].

Abe Bart

Homer

𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑂𝑓

𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓 𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓

Springfield

𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑙𝑖𝑣𝑒𝑠𝐼𝑛56

A PRA model scores a subject-object pair by a linear 
function of their path features:

where      is the set of all length-bounded relation 
paths, and     are parameters estimated via L1,L2-
regularised logistic regression.

𝑓(𝑠, 𝑝, 𝑜) = ∑
=∈?@

𝑃(𝑠 → 𝑜 ∣ 𝜋)×𝜃=,F

Π
𝜃

Some extensions: Subgraph Features [Gardner et al. 2015], Multi-Task [Wang et al. 2016]



Observable Feature Models are Interpretable

Rules extracted by AMIE+ [Galárraga et al. 2015] from the YAGO3-10 dataset [Dettmers et al. 2018]

Body ⇒ Head ConRidence
ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑋, 𝑌) ⇒ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑌, 𝑋) 0.99
𝑖𝑠𝑀𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜(𝑋, 𝑌) ⇒ 𝑖𝑠𝑀𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜(𝑌, 𝑋) 0.96

ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑋, 𝑍) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑍, 𝑌) ⇒ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑋, 𝑌) 0.88
𝑖𝑠𝐴𝑓𝑓𝑖𝑙𝑖𝑎𝑡𝑒𝑑𝑇𝑜(𝑋, 𝑌) ⇒ 𝑝𝑙𝑎𝑦𝑠𝐹𝑜𝑟(𝑌, 𝑋) 0.87
𝑝𝑙𝑎𝑦𝑠𝐹𝑜𝑟(𝑋, 𝑌) ⇒ 𝑖𝑠𝐴𝑓𝑓𝑖𝑙𝑖𝑎𝑡𝑒𝑑𝑇𝑜(𝑌, 𝑋) 0.75

𝑑𝑒𝑎𝑙𝑠𝑊𝑖𝑡ℎ(𝑋, 𝑍) ∧ 𝑑𝑒𝑎𝑙𝑠𝑊𝑖𝑡ℎ(𝑍, 𝑌) ⇒ 𝑑𝑒𝑎𝑙𝑠𝑊𝑖𝑡ℎ(𝑋, 𝑌) 0.73
𝑖𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑜(𝑋, 𝑌) ⇒ 𝑖𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑜(𝑌, 𝑋) 0.66

𝑑𝑒𝑎𝑙𝑠𝑊𝑖𝑡ℎ(𝑋, 𝑍) ∧ 𝑖𝑚𝑝𝑜𝑟𝑡𝑠(𝑍, 𝑌) ⇒ 𝑖𝑚𝑝𝑜𝑟𝑡𝑠(𝑋, 𝑌) 0.61
𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑠(𝑍, 𝑋) ∧ 𝑖𝑠𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑𝐼𝑛(𝑍, 𝑌) ⇒ 𝑖𝑠𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑𝐼𝑛(𝑋, 𝑌) 0.53



Latent Feature Models

• Variables        are conditionally independent given a set of latent features and 
parameters     . Latent means that are not directly observed in the data, and thus 
need to be estimated.

yspo

Θ

Relationships between entities s and o can be inferred
from the interactions of their latent features :

The latent features inferred by these models can be 
very hard to interpret.

f(s, p, o) = fp(es, eo) {
es, eo ∈ ℝk,
fp : ℝk × ℝk ↦ ℝ

es, eo



Latent Feature Models
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parent of
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∀𝑋, 𝑌, 𝑍:
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parentof(𝑋, 𝑍),
parentof(𝑌, 𝑍)



Latent Feature Models

Washington

Malia Ann 
Obama

Sasha 
Obama

Barack 
Obama

Michelle
Obama

lives in

parent of

?

∀𝑋, 𝑌, 𝑍:
marriedwith(𝑋, 𝑌) ⇐

parentof(𝑋, 𝑍),
parentof(𝑌, 𝑍)

✕ Not always true
✕ Hard to learn from data
✕ Hard to formalise for other modalities
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Latent Feature Models

Washington

Malia Ann 
Obama

Sasha 
Obama

Barack 
Obama

Michelle
Obama

lives in

parent of

?



Latent Feature Models - Scoring Functions

• Relationships between entities are determined by interactions between latent 
features — this yields different choices for the scoring function                         :fp : ℝk × ℝk ↦ ℝ
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Latent Feature Models - Scoring Functions

• Relationships between entities are determined by interactions between latent 
features — this yields different choices for the scoring function                         :fp : ℝk × ℝk ↦ ℝ



Latent Feature Models - Predictive Accuracy

Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean 
Reciprocal Rank (MRR), Hits@k. In MRR and Hits@k, for each test triple:
• Modify its subject with all the entities in the Knowledge Graph,
• Score all the triple variants, and compute the rank of the original test triple,
• Repeat for the object.

MRR =
1
|𝒯|

∑
|}6

|𝒯| 1
rank|

, HITS@𝑘 =
|{rank| ≤ 10}|

|𝒯|From [Lacroix et al. ICML 2018]



Latent Feature Models - Interpreting the Embeddings

Learned relation embeddings — using ComplEx with a pairwise margin-based loss
— for WordNet (left), DBpedia, and YAGO (right) [Minervini et al. ECML 2017]



Latent Feature Models - Post Hoc Interpretability

• Generate an explanation model by training Bayesian Networks or Association 
Rules on the output of a Latent Feature Model.

[Carmona et al. 2015, Peake et al. KDD 2018, Gusmão et al. 2018]



Combining Observable and Latent Feature Models

• Additive Relational Effects (ARE) [Nickel et al. NeurIPS 2014] — combines 
Observable and Latent Features in a single linear model:

• Knowledge Vault [Dong et al. KDD 2014] — combines the prediction of 
Observable and Latent Feature Models via stacking:

• Adversarial Sets [Minervini et al. UAI 2017] — incorporate observable features, in 
the form of First-Order Logic Rules R, in Latent Feature Models:

𝑓�F���� = 𝐰���,F� Θ���,�� + 𝐰���,F� Θ���,��

𝑓�F��� = 𝑓������ 𝑓�F����, 𝑓�F����

ℒ(Θ ∣ 𝑅) = ℒ���(Θ) + 𝑚𝑎𝑥
𝒮⊆𝒫(ℰ)

ℒ����(Θ, 𝑅)



Incorporating Rules via Adversarial Training

Idea — adversarial training process where, iteratively:
• An adversary searches for inputs where the model violates constraints

e.g.𝑥, 𝑦, 𝑧such that
isa(𝑥, 𝑦) ∧ isa(𝑦, 𝑧) ∧ ¬isa(𝑥, 𝑧)



Incorporating Rules via Adversarial Training

Idea — adversarial training process where, iteratively:
• An adversary searches for inputs where the model violates constraints
• The model is regularised to correct such violations.



Incorporating Rules via Adversarial Training

Idea — adversarial training process where, iteratively:
• An adversary searches for inputs where the model violates constraints
• The model is regularised to correct such violations.

min
Θ

ℒdata(D ∣ Θ) + λ max
S

ℒviolation(S, D ∣ Θ)



Incorporating Rules via Adversarial Training

Idea — adversarial training process where, iteratively:
• An adversary searches for inputs where the model violates constraints
• The model is regularised to correct such violations.

• Inputs S can be either input space or embedding space
• In most interesting cases, max has closed form solutions
• Constraints are guaranteed to hold everywhere in embedding space.

min
Θ

ℒdata(D ∣ Θ) + λ max
S

ℒviolation(S, D ∣ Θ)



Incorporating Rules via Adversarial Training
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End-to-End Differentiable Reasoning

We can combine neural networks and symbolic models by re-
implementing classic reasoning algorithms using end-to-end 
differentiable (neural) architectures:

Differentiable Architectures
•Can generalise from high-dimensional, 

noisy, ambiguous inputs (e.g. sensory)
•Not interpretable
•Hard to incorporate knowledge
•Propositional fixation [McCarthy, 1988]

Logic Reasoning Based Models
•Can learn from small data
•Issues with high-dimensional, noisy, 

ambiguous inputs (e.g. images)
•Easy to interpret, and can provide 

explanations in the form of reasoning steps 
used to derive a conclusion



Reasoning in a Nutshell — Forward Chaining

• Forward Chaining — start with a list of facts, and work forward from 
the antecedent P to the consequent Q iteratively.

𝑞(𝑋) ← 𝑝(𝑋)𝑝(𝑎)
𝑝(𝑏)
𝑝(𝑐)
…



𝑞(𝑋) ← 𝑝(𝑋)𝑝(𝑎)
𝑝(𝑏)
𝑝(𝑐)
…

𝑝(𝑎), 𝑞(𝑎)
𝑝(𝑏), 𝑞(𝑏)
𝑝(𝑐), 𝑞(𝑐)

…

Reasoning in a Nutshell — Forward Chaining

• Forward Chaining — start with a list of facts, and work forward from 
the antecedent P to the consequent Q iteratively.



Reasoning in a Nutshell — Backward Chaining

• Backward Chaining — start with a list of goals, and work backwards 
from the consequent Q to the antecedent P to see if any data 
supports any of the consequents.

𝑞(𝑋) ← 𝑝(𝑋)
𝑞(𝑎)?𝑝(𝑎)

𝑝(𝑏)
𝑝(𝑐)
…

You can see backward chaining as a 
query reformulation strategy.
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𝑞(𝑎)?

𝑝(𝑎)

You can see backward chaining as a 
query reformulation strategy.

𝑝(𝑎)
𝑝(𝑏)
𝑝(𝑐)
…

Reasoning in a Nutshell — Backward Chaining

• Backward Chaining — start with a list of goals, and work backwards 
from the consequent Q to the antecedent P to see if any data 
supports any of the consequents.



𝑞(𝑋) ← 𝑝(𝑋)
𝑞(𝑎)?𝑝(𝑎)

𝑝(𝑏)
𝑝(𝑐)
…

𝑝(𝑎)

You can see backward chaining as a 
query reformulation strategy.✓

Reasoning in a Nutshell — Backward Chaining

• Backward Chaining — start with a list of goals, and work backwards 
from the consequent Q to the antecedent P to see if any data 
supports any of the consequents.



Differentiable Forward Chaining - ∂ILP [Evans et al. JAIR 2018]

∂ILP uses a differentiable model of forward chaining 
inference:
• Weights of the network represent a probability

distribution over clauses
• A valuation is a vector with values in [0, 1] 

representing how likely it is that each of the 
ground atoms is true
• Forward chaining is implemented by a 

differentiable function that, given a valuation
vector, produces another by applying rules to it.
• If conclusions do not match the desired ones, the 

error is back-propagated to the weights.
• We can extract a readable program.



cycle(𝑋) ← pred(𝑋, 𝑋)
pred(𝑋, 𝑌) ← edge(𝑋, 𝑌)

pred(𝑋, 𝑌) ← edge(𝑋, 𝑍), pred(𝑍, 𝑌)

Differentiable Forward Chaining - ∂ILP [Evans et al. JAIR 2018]



Differentiable Forward Chaining - ∂ILP [Evans et al. JAIR 2018]

1 ↦ 1
2 ↦ 2

3 ↦ 𝐹𝑖𝑧𝑧
4 ↦ 4

5 ↦ 𝐵𝑢𝑧𝑧
6 ↦ 𝐹𝑖𝑧𝑧
7 ↦ 7
8 ↦ 8

9 ↦ 𝐹𝑖𝑧𝑧
10 ↦ 𝐵𝑢𝑧𝑧



Differentiable Forward Chaining - ∂ILP [Evans et al. JAIR 2018]

1 ↦ 1
2 ↦ 2

3 ↦ 𝐹𝑖𝑧𝑧
4 ↦ 4

5 ↦ 𝐵𝑢𝑧𝑧
6 ↦ 𝐹𝑖𝑧𝑧
7 ↦ 7
8 ↦ 8

9 ↦ 𝐹𝑖𝑧𝑧
10 ↦ 𝐵𝑢𝑧𝑧

Rizz(𝑋) ← zero(𝑋)
Rizz(𝑋) ← Rizz(𝑌), pred1(𝑌, 𝑋)

pred1(𝑋, 𝑌) ← succ(𝑋, 𝑍), pred2(𝑍, 𝑌)
pred2(𝑋, 𝑌) ← succ(𝑋, 𝑍), succ(𝑍, 𝑌)



Backward Chaining — Differentiable Proving

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]

𝑞(𝑋) ← 𝑝(𝑋)
𝑞(𝑎)?𝑝(𝑎)

𝑝(𝑏)
𝑝(𝑐)
…

𝑝(𝑎)
✓

Backward Chaining
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[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]

𝑞(𝑋) ← 𝑝(𝑋)
𝑞(𝑎)?𝑝(𝑎)

𝑝(𝑏)
𝑝(𝑐)
…

𝑝(𝑎)
✓

Backward Chaining

𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

✓ ✓✕

BUT there’s a problem..



Backward Chaining — Differentiable Proving

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]

𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

✓ ✓✓
sim = 1sim = 1sim = 0.9



Backward Chaining — Differentiable Proving
Knowledge Base:

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(ℎ𝑜𝑚𝑒𝑟, 𝑏𝑎𝑟𝑡)
𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑌) ⇐

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑍),
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑌).

𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]



Backward Chaining — Differentiable Proving
Knowledge Base:
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𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑍),
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑌).

𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)

proof score𝑆6

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]
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𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)

proof score𝑆6

𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(ℎ𝑜𝑚𝑒𝑟, 𝑏𝑎𝑟𝑡)

proof score𝑆³

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]
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𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑌) ⇐

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑍),
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑌).

𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)

proof score𝑆6

𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(ℎ𝑜𝑚𝑒𝑟, 𝑏𝑎𝑟𝑡)

proof score𝑆³

𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑌)
𝑋/𝑎𝑏𝑒 𝑌/𝑏𝑎𝑟𝑡

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑍)
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑏𝑎𝑟𝑡)

Subgoals:
proof score𝑆µ

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]



Backward Chaining — Differentiable Proving
Knowledge Base:

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(ℎ𝑜𝑚𝑒𝑟, 𝑏𝑎𝑟𝑡)
𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑌) ⇐

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑍),
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑌).

𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)

proof score𝑆6

𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(ℎ𝑜𝑚𝑒𝑟, 𝑏𝑎𝑟𝑡)

proof score𝑆³

𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑌)
𝑋/𝑎𝑏𝑒 𝑌/𝑏𝑎𝑟𝑡

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑍)
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑏𝑎𝑟𝑡)

Subgoals:
proof score𝑆µ

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑍)
𝑍

proof score𝑆¶

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

proof score𝑆·

Knowledge Base:

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(ℎ𝑜𝑚𝑒𝑟, 𝑏𝑎𝑟𝑡)
𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑌) ⇐

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑍),
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑌).

𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)

proof score𝑆6

𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(ℎ𝑜𝑚𝑒𝑟, 𝑏𝑎𝑟𝑡)

proof score𝑆³

𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑌)
𝑋/𝑎𝑏𝑒 𝑌/𝑏𝑎𝑟𝑡

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑍)
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑏𝑎𝑟𝑡)

Subgoals:
proof score𝑆µ

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑍)
𝑍

proof score𝑆¶

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)

… [Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

proof score𝑆·

Knowledge Base:
𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑂𝑓(𝑎𝑏𝑒, 𝑏𝑎𝑟𝑡)

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)

proof score𝑆6

𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(ℎ𝑜𝑚𝑒𝑟, 𝑏𝑎𝑟𝑡)

proof score𝑆³

𝑔𝑟𝑎𝑛𝑑𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑋, 𝑌)
𝑋/𝑎𝑏𝑒 𝑌/𝑏𝑎𝑟𝑡

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑍)
𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑓(𝑍, 𝑏𝑎𝑟𝑡)

Subgoals:
proof score𝑆µ

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, 𝑍)
𝑍

proof score𝑆¶

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑎𝑏𝑒, ℎ𝑜𝑚𝑒𝑟)

… [Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]



Differentiable Reasoning



Explainable Neural Link Prediction



Reasoning Over Text

• We can embed facts from the KG and facts from text in a shared embedding 
space, and learn to reason over them jointly:



Reasoning Over Text

• We can embed facts from the KG and facts from text in a shared 
embedding space, and learn to reason over them jointly:

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]



Reasoning Over Text

• We can embed facts from the KG and facts from text in a shared embedding 
space, and learn to reason over them jointly:

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]



Neuro-Symbolic Integration — Recent Advances

• Recursive Reasoning Networks [Hohenecker et al. 2018] — given a OWL RL 
ontology, uses a differentiable model to update the entity and predicate 
representations.
• Deep ProbLog [Manhaeve et al. NeurIPS 2018] — extends the ProbLog

probabilistic logic programming language with neural predicates that can be 
evaluated on e.g. sensory data (images, speech).
• Logic Tensor Networks [Serafini et al. 2016, 2017] — fully ground First Order Logic 

rules.
• AutoEncoder-like Architectures [Campero et al. 2018] — use end-to-end 

differentiable reasoning in the decoder of an autoencoder-like architecture to 
learn the minimal set of facts and rules that govern your domain via backprop.
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Explaining Privacy Risks
Anna Monreale, University of Pisa, Pisa



Big data “proxies” of social life

Desires, opinions, sentiments

Relationships & social ties

Movements

Shopping patterns & lifestyle



The main tool for a 
Data Scientist to 
measure,
understand,
and possibly predict

human behavior

Big Data Analytics & Social Mining



Data Scientist needs to take into account ethical and 
legal aspects and social impact of data science



Data Protection & Privacy

• A fundamental human right

• Any individual has the right to a private life, to be autonomous, to 
control information about yourself

• Any individual has the right to privacy protection 
• The right to be directly or indirectly non-identifiable 

• Any data processing (es: data mining, data analysis, AI, ML, …) on this 
kind of data can bring to individual privacy violation



Privacy by Design & Risk Assessment



Privacy Risk Assessment Framework for Data Sharing

F. Pratesi, A. Monreale, R. Trasarti, F. Giannotti, D. Pedreschi, T. Yanagihara: PRUDEnce: a System 
for Assessing Privacy Risk vs Utility in Data Sharing Ecosystems. Transactions on Data Privacy  
11(2): 139-167 (2018)



• Data Catalog
• For each:

• Data Format, i.e., the data needed for the service
• Risk Assessment Setting, i.e., the set of pre-

processing and privacy attacks
• The Data Catalog provides:

• Quantification of Privacy Risk, i.e., the evaluation 
of the real risk of re-identification

• Quantification of Data Quality, i.e., the quality 
level we can achieve with private data, compared 
with the data quality of original data. 

Privacy Risk Assessment Framework for Data Sharing



Personal 
Data

Privacy Risk Prediction



Mobility data Retail data

Sequence Data



TASK: it provides the target output for the machine learning models.

Seq1
Seq2

….
Seqn

Training dataset

input output
Simulation of a 
privacy attack

(Seq1, Risk1)
(Seq2, Risk2)

….
(Seqn, Riskn)

Privacy Risk Component



Two approaches:

Feature-based approach

The input data is composed of 
features extracted from the 
input sequence.

Sequence-based approach

The input data is composed of 
sequences.

TASK: it predicts the privacy risk for each sequence.

Long Short Term Memory network (LSTM)

Predictor Component



TASK: it provides an explanation about the reasoning
of the machine learning model.

SHAP
Classifier

+
Training dataset

Explanation
model

Feature importance
w.r.t. a base value

Explanation Component



SHAP: Shapley Additive Explanation

• Game Theory: Branch of micro-economics dealing with interactions
between decision-making agents.
• Cooperative Game Theory: Sub-field of game theory where players

are “working together” to achieve a common goal.
• In Machine Learning:
• game is the prediction task for a single instance
• gain is the actual prediction for this instance minus the average prediction of 

all instances
• players are the feature values of the instance, which collaborate to receive

the gain



Shapley Value

• Key Idea: Measure each player’s contribution to the team’s outcome.

• Heuristic: If we remove a player from the team and the outcome
doesn’t change, then the player wasn’t useful.



Shapley Value

Intuition
For each player compute each outcome where the player was present 
and compare it to the outcome where the player was not present

For each feature i:
• Average of all possible differences between predictions of the 

model without feature i, and the ones with feature i
• Computation of each coalition with feature i



SHAP Explanation

Mobility data

Retail data



Visualizing Explanations
Riccardo Guidotti, Salvo Rinzivillo, ISTI-CNR, Pisa



Transparent Model Visualization

• Representation of model on visual space
• Pro

• Vision at a glance
• Reduction of complexity through interaction
• Exploits visual clues to highlight relevant 

patterns and properties
• Cons

• Complex visualization when model is too large
• Low efficiency of visual space occupancy (e.g. 

decision trees)



Model Explanation Problem to Visualization
In case of BB models, derive an interpretable/transparent box to be visualized.

X = {x1, …, xn}

Visualization of 
Transparent Model



Decision Tree and Rules Visualization

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured
representations of trained networks. NIPS.

Yao Ming, Huamin Qu, and Enrico Bertini. RuleMatrix: Visualizing
and Understanding Classifiers with Rules. IEEE Transactions on 
Visualization and Computer Graphics, 2019



Outcome Explanation Problem to Visualization
Provide an interpretable outcome, i.e., an explanation for the outcome of the black 
box for a single instance.

x



Feature Relevance on the Input Space

Julius Adebayo, Justin Gilmer, Michael Christoph Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity checks for saliency maps. 2018.



Feature Relevance on the Input Space

L. Hu, S. Jian, L. Cao, and Q. Chen. Interpretable recommendation via attraction
modeling: Learning multilevel attractiveness over multimodal movie contents. 
IJCAI-ECAI, 2018.



Feature Properties and Relevance

Gosiewska A, Biecek P (2019). “iBreakDown: Uncertainty of Model 
Explanations for Non-additive Predictive Models.” arXiv:1903.11420,

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why
should i trust you?: Explaining the predictions of any classifier. KDD.



Model Inspection Problem to Visualization
Provide a representation (visual or textual) for understanding either how the 
black box model works or why the black box returns certain predictions more 
likely than others.

X = {x1, …, xn}



Sensitivity Measures

Paulo Cortez and Mark J. Embrechts. 2011. Opening black box data 
mining models using sensitivity analysis. CIDM.

VEC

feature distribution

Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of 
black boxes by meaningful perturbation. arXiv:1704.03296 (2017).



Linked display for property browsing

https://github.com/ModelOriented/modelStudio



Summary

• Efficient explanation through visual techniques
• Visualization strategies to reduce complexity of 

model visualization and multi-dimensionality
• Visual clues

• Interaction vs complexity
• Linked displays for multi-dimensional exploration



Conclusions



Take Home Message



Take-Home Messages

• Explainable AI is motivated by real-world application of AI
• Not a new problem – a reformulation of past research challenges in AI
• Multi-disciplinary: multiple AI fields, HCI, social sciences (multiple 

definitions)
• In Machine Learning: 
• Transparent design or post-hoc explanation?
• Background knowledge matters!
• We can scale-up symbolic reasoning by coupling it with representation 

learning on graphs.
• In AI (in general): many interesting / complementary approaches



Open The Black Box!

• To empower individual against undesired effects of 
automated decision making 
• To reveal and protect new vulnerabilities
• To implement the “right of explanation”
• To improve industrial standards for developing AI-

powered products, increasing the trust of companies 
and consumers
• To help people make better decisions
• To align algorithms with human values 
• To preserve (and expand) human autonomy



Open Research Questions

• There is no agreement on what an explanation is
• There is not a formalism for explanations
• There is no work that seriously addresses the 

problem of quantifying the grade of 
comprehensibility of an explanation for humans
• Is it possible to join local explanations to build a 

globally interpretable model?
• What happens when black box make decision in 

presence of latent features?
• What if there is a cost for querying a black box?



Future Challenges

• Creating awareness! Success stories!
• Foster multi-disciplinary collaborations in XAI research.
• Help shaping industry standards, legislation.
• More work on transparent design. 
• Investigate symbolic and sub-symbolic reasoning.
• Evaluation:
• We need benchmark - Shall we start a task force?
• We need an XAI challenge - Anyone interested?
• Rigorous, agreed upon, human-based evaluation protocols
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