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Tutorial Outline

* 10:30 - Welcome and General Overview - Anna Monreale

* 10:35 - Science & Technology for Al Decision Making - Anna Monreale
* 10:40 - Explaining Explanation Methods - Riccardo Guidotti

* 11:20 - Explaining with Knowledge Graphs - Pasquale Minervini

* 11:50 - Explaining Privacy Risks - Anna Monreale

e 12:20 - Visualizing Explanations - Riccardo Guidotti (Salvo Rinzivillo)

* 12:30 - Conclusions and Q&A - Anna Monreale

e 12:40 - Lunch break

* 14:00 - Workshop



Science & Technology for Al
Decision Making



. ey Oxford Dictionary of English
Definitions

explanation | skspla'nerf(a)n |

noun

a statement or account that makes something clear: the birth rate is central to any explanation of
population trends.

interpret | mn'‘tarprrt |

verb (interprets, interpreting, interpreted) /with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.



What is “Explainable Al” ?

* Explainable-Al explores and investigates methods to produce or
complement Al models to make accessible and interpretable the
internal logic and the outcome of the algorithms, making such
process understandable by humans.

 Explicability, understood as incorporating both intelligibility (“how
does it work?” for non-experts, e.g., patients or business customers,
and for experts, e.g., product designers or engineers) and
accountability (“who is responsible for”).

* 5 core principles for ethical Al:
* beneficence, non-maleficence, autonomy, and justice
* a new principle is needed in addition: explicability



Motivating Examples

* Criminal Justice

* People wrongly denied The Big Read Artificial intelligence <+ Add to myFT )

e Recidivism prediction
* Unfair Police dispatch

€he New YJork Times

OP-ED CONTRIBUTOR

When a Computer
Program Keeps You in Jail

J

Insurance: Robots learn the
business of covering risk

* Finance:
* Credit scoring, loan approval ford
. D Stanfor —
Insurance quotes MEDICINE | NewsCenter —_—

* Healthcare
* Al as 3% party actor in physician -
patient relationship

* Learning must be done with
available data: cannot randomize
cares given to patients!

e Must validate models before use.

CED-» B2

Researchers say use of artificial intelligence in medicine raises
ethical questions

In a perspective piece, Stanford researchers discuss the ethical implications of using
machine-learning tools in making health care decisions for patients.



Right of Explanation

General
Data
Protection
Regulation

Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic
involved” when “automated (algorithmic) individual decision-making”, including profiling, takes place.



Explanation in different Al fields
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Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-
Based Reasoning Through Prototypes: A Neural Network That Explains
Its Predictions. AAAI 2018: 3530-3537
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Surogate Model

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Representations of Trained Networks. NIPS 1995: 24-30



Explanation in different Al fields

* Machine Learning
* Computer Vision

(a) Input Image (b) Ground Truth (¢) Semantic Segmentation (d) Aleatoric Uncertainty (¢) Epistemic Uncertainty

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NIPS 2017: 5580-5590
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Saliency Map
Julius Adebayo, Justin Gilmer, Michael Muelly, lan J. Goodfellow, Moritz Hardt, Been
Kim: Sanity Checks for Saliency Maps. NeurlPS 2018: 9525-9536



Explanation in different Al fields

* Machine Learning
* Computer Vision
* Knowledge Representation and Reasoning
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Abduction Reasoning (in Bayesian Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)

fo
h§
N\
PCLL PO OK ) 1
T ¥ detected
" I'J'Vr‘l
. {I. ! I"_f(:'ll ']
1 A 4
=NCL INO; REC= OF
. P close
f t ected
at L}
TC I 0l

Diagnosis Inference

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and
Practice. KR 2012



Explanation in different Al fields

Domain
.‘

@Agem(s)
* Machine Learning
+ Computer Vision F—-E=4& -
—J
* Knowledge Representation and Reaw.....s

Agent Strategy Summarization
Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization.

* Mu Iti_agent SyStemS AAMAS 2018: 1203-1207
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Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-
Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39



Explanation in different Al fields

* Machine Learning

* Computer Vision
* Knowledge Representation and Reasoning

* Multi-agent Systems
* NLP

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)



Explanation in different Al fields

* Machine Learning

* Computer Vision

* Knowledge Representation and Reasoning
* Multi-agent Systems

 NLP

* Planning and Scheduling

gA gA 9B gA
(b) (c) (d)

Human-in-the-loop Planning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)



Explanation in different Al fields

Robot: [ have decided to turn left.

° M ac h i ne Lea rn i N g Human: Why did you do that?

Robot: [ believe that the correct action is to turn left
BECAUSE:

o CO m p ute r Vi S i O N I'm being asked to go forward

AND This area in front of me was 20 cm higher than me
*highlights area*

° Kn ow I ed ge Re p rese ntat i on an d Rea son i N g AND the area to the left has maximum protrusions of less

than 5 cm *highlights area*
AND I'm tilted to the right by more than 5 degrees.

® M It' t S t Here is a display of the path through the tree that lead to
u I_age N yS ems this decision. *displays tree*
Human: How confident are you in this decision?

o N LP Robot: The distribution of actions that reached this leaf
node is shown in this histogram. *displays histogram*
This action is predicted to be correct 67% of the time.

L L

¢ P I annin g an d SC h ed u I | ng Human: Where did the threshold for the area in front come
from?

° . Robot: Here is the histogram of all training examples that

RO bOtICS reached this leaf. 80% of examples where this area was

above 20 cm predicted the appropriate action to be “drive
forward™.

From Decision Tree to human-friendly information

Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent
Robots. AAAI Workshops 2017



Explanation as Machine-Human Conversation

[Weld and Bansal 2018]

G H: Why? H: (Hmm. Seems like it might H: What happens if the
/ C: See below: be just recognizing anemone background
- texture!) Which training anemones are f
examples are most influential removed? E.g., Q
to the prediction?
l C: These ones:
ML Classifier . C: I still predict
‘ (:I'(‘('-Il ‘l‘(“L'IUII\ tll'j\'l-lt‘ FISH. because
for FISH, while RED of these green
C: I predict FISH pushes towards DOG. ,\u/u'r/u'\‘('/.\.'

There's more green.

- Humans may have follow-up questions

- Explanations cannot answer all users’ concerns



Role-based Interpretability

“Is-the-explanation-terpretable?” - “To whom is the explanation interpretable?”

No Universally Interpretable Explanations!

* End users “Am | being treated fairly?”
“Can | contest the decision?”

“What could | do differently to get a
positive outcome?”

* Engineers, data scientists: “Is my system
working as designed?”

* Regulators “ Is it compliant?”

An ideal explainer should model the user
background.

Creators

A

Machine
learning
system

|
|
v

Data-subjects

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

Examiners

E—E—&

Operators Executors Decision-
subjects

[Tomsett et al. 18]



Summarizing: the Need to Explain comes from ...

* User Acceptance & Trust [Lipton 2016, Ribeiro 2016, Weld and Bansal 2018]
* Legal

* Conformance to ethical standards, fairness

* Right to be informed [Goodman and Flaxman 2016, Wachter 2017]

 Contestable decisions

* Explanatory Debugging [Kulesza et al. 2014, Weld and Bansal 2018]

* Flawed performance metrics
* Inadequate features
* Distributional drift



XAl is Interdisciplinary

* For millennia, philosophers have |
asked the questions about what Setomee
constitutes an explanation, what

is the function of explanations,
and what are their structure

: : N\ Human-Agent
* [Tim Miller 2018] [ e
Artificial - Human-Computer
Intelligence | Interaction
\
\\
\
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Explaining Explanation Methods



What is a Black Box Model?

A black box is a model,
whose internals are either
unknown to the observer or
they are known but
uninterpretable by humans.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 93.






COMPAS recidivism black bias

DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest b'
without violence ’

Subsequent Offenses

:  3drug possessions Subsequent Offenses

i None

LOW RISK 3 HiGHRrRisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.







Interpretable, Explainable and
Comprehensible Models




Interpretability

* To interpret means to give or provide the meaning or to explain and
present in understandable terms some concepts.

* In data mining and machine learning, interpretability is the ability to
explain or to provide the meaning in understandable terms to a
human.

https://www.merriam-webster.com/

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2.


https://www.merriam-webster.com/

Dimensions of Interpretability

* Global and Local Interpretability:.
* Global: understanding the whole logic of a model
 Local: understanding only the reasons for a specific decision

e Time Limitation: the time that the user can spend for
understanding an explanation.

* Nature of User Expertise: users of a predictive model may have

different background knowledge and experience in the task.
The nature of the user expertise is a key aspect Ii i|

for interpretability of a model. IEeil



Desiderata of an Interpretable Model

* Interpretability (or comprehensibility): to which extent the model
and/or its predictions are human understandable. Is measured with

the complexity of the model.
* Fidelity: to which extent the model imitate a black-box predictor.

e Accuracy: to which extent the model predicts unseen instances.

- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

Fairness: the model guarantees the protection of groups against
discrimination.

Privacy: the model does not reveal sensitive information about people.

Respect Monotonicity: the increase of the values of an attribute either
increase or decrease in a monotonic way the probability of a record of
being member of a class.

Usability: an interactive and queryable explanation is more usable than
a textual and fixed explanation.

Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.

Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on
privacy preserving data mining. SpringerPlus .

Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

Reliability and Robustness: the interpretable model should maintain
high levels of performance independently from small variations of the
parameters or of the input data.

Causality: controlled changes in the input due to a perturbation should
affect the model behavior.

Scalability: the interpretable model should be able to scale to large
input data with large input spaces.

Generality: the model should not require special training or restrictions.



Recognized Interpretable Models

1st, 2@, survived PREDICTION: p(survived = yes | X) = 0.671
female Pclass? ‘ OUTCOME: YES
3rd class not survived Feature contribution
sex”?
y survived Ras 0.344
male age’? Age 20,034
}‘ not survived Sex | 1194
Decision Tree Linear Model

if condition1 A conditiona A conditions then outcome

Rules

Value

3rd
52

female



Complexity F J

* Opposed to interpretability. * Linear Model: number of non
zero weights in the model.

* Is only related to the model and not
to the training data that is unknown. ¢ Rule: number of attribute-value
pairs in condition.

* Generally estimated with a rough
approximation related to the size of ¢ Decision Tree: estimating the
the interpretable model. complexity of a tree can be hard.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Open the Black Box Prob\ems
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Problems Taxonomy

OPEN THE BLACK
BOX PROBLEMS

BLACK BOX
EXPLANATION

|| ]

|

MODEL
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TRANSPARENT
BOX DESIGN

MODEL
INSPECTION




XbD — eXplanation by Design @

Black-box System
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BBX - Black Box eXplanation

Black-box
Al System

Eji'ﬂ

Explanation

Input Data

- ) BLACK BOX
EXPLANATION
Explanation Sub-system
MODEL OUTCOME MODEL
EXPLANATION EXPLANATION INSPECTION




Classification Problem

TRAINING BLACK BOX
o | JETYT »| BLACKBOX | »| PREDICTION
X =1{Xy, «ue, X}
TEST

SET




Model Explanation Problem

Provide an interpretable model able to mimic the overall logic/behavior of
the black box and to explain its logic.

R, : IFOutlook = Sunny) AND
(Windy= False) THEN Play=Yes
R, : IFOutlook = Sunny) AND
INTERPRETABLE (Windy= True) THEN Play=No

— BLACKBOX |+—» GLOBAL 5 | Ry IHQutlook = Overcast)
THEN Play=Yes

PREDICTOR R, : IFOutiook = Rainy) AND

TEST
INSTANCES

(Humidity= High) THEN Play=No
X =1{Xy, «uey X} R, : IF(Outiook = Rainy) AND

(Humidity= Normal) THEN Play=Yes




Outcome Explanation Problem

Provide an interpretable outcome, i.e., an explanation for the outcome of
the black box for a single instance.

INTERPRETABLE
TEST R,: IF(Outlook = Sunny) AND
INSTANCE BLACK BOX PRIEODféI[_OR . (Windy= False) THEN Play=Yes

X




Model Inspection Problem

Provide a representation (visual or textual) for understanding either how the
black box model works or why the black box returns certain predictions more
likely than others.

TEST VISUAL ' ' :
INSTANCES >| BLACKBOX | | RepRENTATION |T T ¢ |

X =1{Xy, «uey X}




Transparent Box Design Problem

Provide a model which is locally or globally interpretable on its own.

TRAINING INTERPRETABLE INTERPRETABLE R, : IFQutlook = Sunny) AND
r b ' P b | (Windy= False) THEN Play=Yes
SET LEARNER PREDICTOR R, : IFOutiook — Sunny) AND
- (Windy= True) THEN Play=No
— R. : IFOutlook = Overcast)
X =Xy, oy Xp} THEN Play=Yes
R, : IF{Outlook = Rainy) AND
TEST (Humidity= High) THEN Play=No
. ; R; : IFOutlook = Rainy) AND
INSTANCE (Humidity= Normal) THEN Play=Yes

X




Categorization p Yl
* The type of problem |
* The type of black box model that the explanator is able to open
* The type of data used as input by the black box model

* The type of explanator adopted to open the black box



Black Boxes Q«’_ ,
¢ 7. 000
* Neural Network (NN)

* Tree Ensemble (TE)

e Support Vector Machine (SVM)

* Deep Neural Network (DNN)




Types of Data

Table of baby-name data
(baby-2010.csv)

Field

name rank gender year " names

Jacob 1 bo 2010

ol ™~ One row

Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010 I m a eS
Sophia 2 girl 2010 g
Michael 3 boy 2010

: : : IMG)

: : : (

: 2000 rows : :

. all told . '

Tabular
(TAB)



Explanators

* Decision Tree (DT)

* Decision Rules (DR)

e Features Importance (F/)
 Saliency Maps (SM)

* Sensitivity Analysis (SA)
 Partial Dependence Plot (PDP)
* Prototype Selection (PS)

 Activation Maximization (AM)



Reverse Engineering

* The name comes from the fact that we can only observe
the input and output of the black box.

* Possible actions are:
* choice of a particular comprehensible predictor

» querying/auditing the black box with input records
created in a controlled way using random perturbations

w.r.t. a certain prior knowledge (e.g. train or test)

Input Output

* |t can be generalizable or not:
* Model-Agnostic
* Model-Specific




Model-Agnostic vs Model-Specific

TEST RANDOM DATA
INSTANCES > | perturgaTioN | % BLACKBOX fr——— PREDICTION
independentI |
A 4
INTERPRETABLE INTERPRETABLE ORACLE
PREDICTOR | LEARNER | *
| — T —— T —
TEST ' | RANDOM DATA | !
NsTANCESE— | PERTURBATION . »| BLACKBOX |- »| PREDICTION :
| = |
| | |
: dependent I - :
| I
INTERPRETABLE | INTERPRETABLE LEARNER ORACLE |
PREDICTOR ! I
' |

b e e e e e e e e e e e o e e o e e o e e e e e o e - - o - - o - - - - — — — — —
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Trepan [22] Craven et al. 1996 DT NN TAB v v
- [57] Krishnan et al. 1999 DT NN TAB v v v
DecText [12] Boz 2002 DT NN TAB v v v
GPDT [46] Johansson et al. 2009 DT NN TAB v v v v
Tree Metrics [17] Chipman et al. 1998 DT TE TAB v
CCM [26] Domingos et al. 1998 DT TE TAB v v v
- [34] Gibbons et al. 2013 DT TE TAB v v
STA [140] Zhou et al. 2016 DT TE TAB v
CDT [104]  Schetininetal. 2007 DT TE TAB v
— 38 Hara et al 2016 DT TE TAB
TSP . .
Coni Rules Solving The Model Explanation Problem
G-REX
REFNE [141] Zhou et al. 2003 DR NN TAB v v v v
RxREN [6] Augasta et al. 2012 DR NN TAB v v v



Global Model Explainers

* Explanator: DT R, : IF(Outiook = Sunny) AND
* Black Box: NN, TE (Windy= False) THEN Play=VYes
* Data Type: TAB R, : IFOutlook = Sunny) AND
(Windy= True) THEN Play=No
* Explanator: DR %E’I\T (F(’)I:;'i?(t: ]
* Black Box: NN, SVM, TE R, : IF{Dutlook = Rainy) AND
* Data Type: TAB (Humidity= High) THEN Play=No
R; : IHOutlook = Rainy) AND
+ Explanator: Fl (Humidity= Normal) THEN Play=Yes

e Black Box: AGN
* Data Type: TAB



Tre PaN —DT, NN, TAB ) Uiy <25 5
o7 03 "6 o
60% 40%
01 T = root of the tree() @
02 Q = <T p X p {}> niformityCe:ISize<4.5
03 while Q not empty & size(T) < limit
04 N, Xy, Cy = pPop(Q) SareNulel <25
05 Zy = random(Xy, Cg)
06 blackbox 'y, = b(z), y = b(Xy) ‘ o
07 ouditing  jf same class(y U y,) w ) G G U
08 continue
09 S = best split(Xy U Zy, v U v;,)
10 S’'= best m-of-n split(S)
11 N = update with split(N, S')
12 for each condition c¢ in S’
13 C = new child of(N)
14 Cc = CNU {c}
15 X. = select with constraints(Xy, Cy)
16 put(Q, <C, X., C.>)

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.



RXREN -br, NN, TAB

01 prune insignificant neurons
02 for each significant neuron
03 for each outcome

lack box

ammmi—*compute mandatory data ranges NP

05 for each outcome

06 build rules using data ranges of each neuron

07 prune insignificant rules

08 update data ranges in rule conditions analyzing error

if ((data(l}) > L1z Adata(l}) < Ujz) A (data(lp) > Loz Adata(lp) < Uxz) A
(data(I3) > L33z Adata(I3) < U3zz)) then class =C3

else

if ((data(l1) > L11 Adata(l1) < Ui1) A (data(l3) = L3y Adata(13) < Uzy))

then class =C}
- M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012.

Reverse engineering the neural networks for rule
extraction in classification problems. NPL. class = Cy

else
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. [134] Xu et al. 2015 SM DNN IMG v v v
_ (30] Fong et al. 2017 SM DNN IMG v
CAM [139] Zhou et al. 2016 SM DNN IMG v v v
Grad-CAM [106] Selvaraju et al. 2016 SM DNN IMG v v v
_ [109]  Simonianetal. 2013 SM DNN IMG v v
PWD [7] Bach et al. 2015 SM DNN IMG v v
. [113] Sturm et al. 2016 SM DNN IMG v v
DTD [78] Montavon et al. 2017 SM DNN IMG v v
DeapLIFT [107]  Shrikumaretal. 2017 FI DNN ANY v v
CP [64 Landecker et al 2013 SM NN IMG
— [14 . :
s Solving The Outcome Explanation Problem
_ [ i al N1E G 3
ExplainD [89] Poulin et al. 2006 FI SVM TAB v v
_ [20]  Strumbeljetal. 2010 FI AGN TAB v v v e



Local Model Explainers

* Explanator: SM
e Black Box: DNN, NN
* Data Type: IMG

* Explanator: FI R, IF(Outlook = Sunny) AND
* Black Box: DNN, SVM (Windy= False) THEN Play=Yes

* Data Type: ANY

e Explanator: DT
* Black Box: ANY
* Data Type: TAB



Local Explanation

* The overall decision
boundary is complex

* |In the neighborhood of a
single decision, the
boundary is simple

* A single decision can be
explained by auditing the
black box around the
given instance and
learning a local decision.




LIME —F1 AGN, ANY 0 1

duration_in_month <= ...
0.11

ﬁ:count_check_stamsz...
Q.09
01 z = {} personal_status_sex=....
. . 0.07

02 X 1lnstance to explain gmmmmLqummm

| A— . 007
03 X real2interpretable(Xx) credit_history=critical...
04 for 1 in {1, 2, .., N} ool
05 z;= sample around(x’)
06 z = 1nterpretabel2real(z’)
07 Z =72 U {<z;, b(z;), d(x, z)>}
08 w = solve Lasso(Z, k) ™~

black box

09 return w auditing

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?:
Explaining the predictions of any classifier. KDD.




age < 25
try, \%
job mcome < 1500
LORE - DR, AGN, TAB g N <
mcome < 900 age < 17 job grant
z \ / \ clery \olther
O 1 X inS tance to eXpl ain deny g’l‘"a’/;,.t‘ wdeny gmn?}. deny grant

02 Z. = geneticNeighborhood(x, fitness_., N/2)

03 Z. = geneticNeighborhood(x, fitness,., N/2)
04 2 = 2- U 2, black box

05 c = buildTree(Z, b(Z)4  auditing

06 r = (p -> y) = extractRule(c, X)

07 ¢ = extractCounterfactual(c, r, X)

08 return e = <r, ©¢>

| r = {age < 25, job = clerk, income £ 900} -> deny |

® = {{{income > 500} -> grant), pedresch, Franco T
({17 < age < 25, job = other} -> grant)}




Meaningful Perturbations -swm, bnn, IMG

01
02
03

04

X 1lnstance to explain black box
varying X into X’ maximizing b(x)~b(x’)’//‘wwmm
the variation runs replacing a region R of x with:
constant value, noise, blurred image
reformulation: find smallest R such that b(xyz)<b(x)

flute: 0.9973 flute: 0.0007 Learned Mask

Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).



prediction

SHAP (SHapley Additive exPlanations) [=

M

* SHAP assigns each feature an 9(z') = ¢o + ;qsiz,;,

importance value for a S|\(|F| - |S] — 1)!
particular prediction by means %~ S;\:{i} 7! o (@sug) — fs(es)]
of an additive feature . L, e 2 o
attribution method. T e
* It assigns an importance value o

to each feature that represents ItV i b
the effect on the model o —{—
prediction of including that 3
feature _ f

Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model :%E i

predictions." Advances in Neural Information Processing Systems. 2017. —
output



¢ s F§ & » & £ o »
§ Q-‘%. $ d af <~§ E}:b o 2 ; 5‘9 ,§Q F &
- v e & S ¢ ¥ g S
NID [83] Olden et al. 2002 SA NN TAB v
GDP (8] Baehrens 2010 SA AGN TAB v v v
QII [24] Datta et al 2016 SA AGN TAB v v v
IG [115] Sundararajan 2017 SA DNN ANY v v
VEC [18] Cortez et al. 2011 SA AGN TAB v v v
VIN [42] Hooker 2004 PDP AGN TAB v v v
ICE [35] Goldstein et al. 2015 PDP AGN TAB v v v v
Prospector  [55] Krause et al. 2016 PDP AGN TAB v v v
Auditing [2] Adler et al. 2016 PDP AGN TAB v v v v
OPIA

IP

— [112]  Springenbergetal. 2014 AM DNN IMG v v
DGN-AM [80] Nguyen et al. 2016 AM DNN IMG v v v




Inspection Model Explainers

* Explanator: SA
e Black Box: NN, DNN, AGN

* Data Type: TAB

e Explanator: PDP
* Black Box: AGN
* Data Type: TAB

* Explanator: AM
* Black Box: DNN
* Data Type: IMG, TXT



VEC —sa, AGN, TAB

* Sensitivity measures are variables
calculated as the range, gradient,
variance of the prediction.

0.3
l

* The visualizations realized are
barplots for the features

0.2

VEC

importance, and Variable Effect

Characteristic curve (VEC) plotting  _
the input values versus the (average)

feature distribut

outcome responses.

\.
\\
on J black box

auditing

0.0

Paulo Cortez and Mark J. Embrechts. 2011. Opening black box data mining models using sensitivity analysis. CIDM.

400 600 800 1000 1200 1400

200



Prospector - rop, AGN, TAB

* Introduce random perturbations on input values to understand to
which extent every feature impact the prediction using PDPs.

* The input is changed one variable at a time.

BMI
Glucose
Risk

o
@)
<

e
auditing T

"\ black box - 'U‘

O‘%O 3 40 45 O

age_at_enroliment (staticSum)

60 65 70 75 80

EON
o

3. [
@ 5
8 3
o (]
8 8
(-D‘ o

[T

age_at_enrollment (staticSum) demographic (age) (0.153)

<| (55) |>
55

30 35 40 45 50 60 65 70 75

Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).



& 3 4 v o~ &
efo & s 4 \f S & sf s g FoF
v & & S v & & o
CPAR [135] Yin et al. 2003 DR — TAB v
FRL [127] Wang et al. 2015 DR - TAB v v v
BRL [66] Lethametal. 2015 DR _ TAB v
TLBR [114] Su et al. 2015 DR - TAB v v
IDS [61] Lakkaraju et al. 2016 DR — TAB v
Rule Set [130] Wang et al. 2016 DR — TAB v v v
1Rule [75] Malioutov et al. 2017 DR - TAB v v
PS 9] Bien et al. 2011 PS - ANY v v
BCM [51] Kim et al. 2014 PS _ ANY v v
OT-SpAMs [128] Wang et al. 2015 DT — TAB v v v

Solving The Transparent Design Problem




Transparent Model Explainers

* Explanators:
DR
e DT
* PS

* Data Type:
* TAB



CPAR -DR, 1AB

* Combines the advantages of associative (A1 =2, Ay =1, Ay = 1).
classification and rule-based classification. (41 =2, A3 =1, Ay =2, Ay =3).

* It adopts a greedy algorithm to generate

rules directly from training data.
Al=2—T— A= —*A4=1

* It generates more rules than traditional
rule-based classifiers to avoid missing A3 T Ad) A3
important rules.

—>A2=1
* To avoid overfitting it uses expected
accuracy to evaluate each rule and uses the

best k rules in prediction.

Xiaoxin Yin and Jiawei Han. 2003. CPAR: Classification based on predictive association rules. SIAM, 331-335



CORELS -pr, 1AB

* It is a branch-and bound algorithm that provides the optimal solution
according to the training objective with a certificate of optimality.

* It maintains a lower bound on the minimum value of error that each
incomplete rule list can achieve. This allows to prune an incomplete
rule list and every possible extension.

* It terminates with the optimal rule list and a certificate of optimality.

if (age = 18 — 20) and (sex = male) then predict yes

else if (age = 21 — 23) and (priors = 2 — 3) then predict yes
else if (priors > 3) then predict yes

else predict no

- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. Learning certifiably optimal rule lists. KDD.
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Explaining with Knowledge Graphs
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* Knowledge Graphs
 What/Where are they?
* How can they help in XAI?
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* Knowledge Graphs
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* Statistical Relational Learning in Knowledge Graphs
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* Incorporating Symbolic Knowledge in Sub-Symbolic Models



Outline

* Knowledge Graphs
 What/Where are they?
* How can they help in XAI?

* Statistical Relational Learning in Knowledge Graphs

* Symbolic (Explainable) Models
* Sub-Symbolic (Black-Box) Models
* Incorporating Symbolic Knowledge in Sub-Symbolic Models

* Differentiable Reasoning
* Forward Chaining
* Backward Chaining



Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where
knowledge is encoded by relationships between entities.



Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where
knowledge is encoded by relationships between entities.

1961-08-04 . —
Hass, A Leonardo Da Vinci
o,
Lot Sl

Person 14 July 1990

La Joconde a Washington



Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where
knowledge is encoded by relationships between entities.

|nh|b|ts\ I mozavaptan
I n-hydroxy-n'-(4-butyl-2-methyil... ,

e VEGFA (homo sapiens)

es not aff
LIS gp‘t \\ interacts with

systolic pressure
\\ \\
treats \ gene product is biomarker type
\ \ :
augments rattus norvegicus

g

is associated with /-
\ is process of
7

\ hypertensive disease

-

~ N (
occurs in \\ l

T \

__{ polycystic kidney, autosomal d...

|
renal blood flow _ _affects—

| N
is location of

is associated with .

Drug Prioritization using the semantic properties of a Knowledge Graph, Nature 2019



Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where
knowledge is encoded by relationships between entities.

] subject predicate object
Barack Obama was born in Honolulu
Hawaii has capital Honolulu
Barack Obama is politician of United States
Hawaii is located in United States
Barack Obama is married to Michelle Obama

Michelle Obama is a Lawyer
Obama

Michelle Obama lives in United States




Industry-Scale Knowledge Graphs in Google

;‘O
. e Wiirzburgfotu

The Google Knowledge Graph contains more
than 70 billion assertions describing a billion
entities and covers a variety of subject matter
— “things not strings”.

S0\ »

Map data ©2019 Geollasis-DE/BKG (02009)

Wurzburg

Wurzburg is a city in Germany’s Bavaria region. It's famous for

Used for answering factoid queries about lavish baroque and rococo architecture, partculary the 18th-century

palace residence, with ornate rooms, a huge fresco by Venetian

e ntit i es Se rved fro m t h e Kn OW I e dge G ra p h . artist Tiepolo and an elaborate staircase. Home 10 numerous wine

bars, cellars and wineries, Wurzburg is the center of the Franconian
! Population wine country, with its distinctive bocksbeutel (botties with flattened
round shapes)

Weather : 4 * C, Wind N at 3 km / h, 82% Humidity

1 24 ’ 873 (20 1 6) Postal codes : 97070-97084

District : Urban district
Population : 124 873 (2016) Uniea?

1 Billion entities, ~70 Billion assertions Dialing code : 0931



The Linked Open Data Cloud

Legend

KGs encoding more than 200M facts about more
than 50M entities.

Linked Open Data cloud - over 1200 interlinked é
©

Spans a variety of domains, such as Geography,
Government, Life Sciences, Linguistics, Media,
Publications, and Cross-domain

Name Entities Relations Types Facts
Freebase 40M 35K 26.5K  637M
DBpedia (en) 4.6M 1.4K 735 580M
YAGO3 17M 77 488K 150M
Wikidata 15.6M 1.7K 23.2K 66M




Knowledge Graphs and Explainable Al

Profile Recommendations

We can use Knowledge Graphs . @ @ Explanation Framework

for explaining the decisions of URIs NP
Machine Learning algorithms, ’° | < > ia
such as recommender systems, A%

. . : . Properties i
and design machine learning Builder > 3nadia

models that are less prone to
capturing spurious correlations
in the data.

® Locally vs. Globally

———————————————— ] ————————

Generator

® Ad-hoc vs. Post-hoc

[Di Noia et al. 2012, Ostuni et al. 2013, Musto et al. 2019]



Knowledge Graphs and Explainable Al

unit 55

e,
We can use Knowledge Graphs — iv 4
for explaining the decisions of o N Eﬂ"
Machine Learning algorithms,
such as recommender systems,
and design machine learning
models that are less prone to
capturing spurious correlations
in the data.

loU 0.0

orange

ball pit

unit 20 unit 42 unit 135

Ol 4

* Ad-hoc vs. Post-hoc B | ..

* Locally vs. Globally

.
loU 0.13 loU 0:10 loU 0.08 loU 0.08
grass sky

Freddy Lecue: On The Role of Knowledge Graphs in Explainable [Bau et al. 2017, Lecue 2019]
Al. SWJ 2019



Knowledge Graphs and Explainable Al

We can use Knowledge Graphs
for explaining the decisions of
Machine Learning algorithms,
such as recommender systems,
and design machine learning
models that are less prone to
capturing spurious correlations
in the data.

* Locally vs. Globally

® Ad-hoc vs. Post-hoc

ApvENTURE: Adversarial Training for Textual Entailment
with Knowledge-Guided Examples

Dongyeop Kang' Tushar Khot’ Ashish Sabharwal’ Eduard Hovy'

Annotation Artifacts in Natural Language Inference Data

Suchin Gururangan*“® Swabha Swayamdipta*
Omer Levy®* Roy Schwartz*®  Samuel R. Bowman' Noah A. Smith*

Behavior Analysis of NLI Models:
Uncovering the Influence of Three Factors on Robustness

V. Ivan Sanchez Carmona and Jeff Mitchell and Sebastian Riedel

Hypothesis Only Baselines in Natural Language Inference

Adam Poliak' Jason Naradowsky' Aparajita Haldar'~
Rachel Rudinger' Benjamin Van Durme’




Statistical Relational Learning

* Task — model the existence of each triple x,, = (s,p,0) € EX R X & as
binary random variables Ysyo € 10,1} indicating whether *spois in the KG:

1 if €EZ L
Yspo = { Yspo _ entriesin Y € {0,1}|%|X|%|X|%|
0 otherwise

* Every realisation of Y denotes a possible world-modelling P (Y)allows
predicting triples based on the state of the entire Knowledge Graph.

e Scalability is important - e.g. on Freebase (40M entities), the number of
variables to represent can be quite large:| & X % x &| > 10"



Types of Statistical Relational Learning Models

« Depending on our assumptions on P (Y) , we end up with three model classes:

 Latent Feature Models: variables Y5, € {0.1} are conditionally independent given
the latent features ® associated with subject, predicate, and object:

VX, EEXRXE,x; #x:y; 1Ly | O

* Observable Feature Models: related to Latent Feature Models, but ® are now
graph-based features, such as paths linking the subject and the object.

« Graphical Models: variables Yo € 101} 3re not assumed to be conditionally
independent — each Yspo can depend on any of the other random variables in Y.



Conditional Independence Assumption

* Assuming all Ysro variables are conditionally independent allows modelling their
existence via a scoring function [ (s:P.21©) representing the likelihood that a
triple is in the KG, conditioned on the parameters O :

e

ST 11111

with P (v, 1©) = o (f(s,p.0 1 ©))
se€pekocg | 1 —P (ysp,) | @) otherwise

* Scoring Function - depending on the type of features used by f(-18) we have
two families of models - Observable and Latent Feature Models.



Observable Feature Models - Rule Mining and ILP

Rule Mining and Inductive Logic Programming methods extract rules
via mining methods, and use them to infer new links.

® Logic Programming (deductive): from facts and rules, infer new facts (First-Order Logic)

® |nductive Logic Programming (ILP): from correlated facts, infer new rules (e.g.
PngOl [Muggleton, 1993], Aleph [Srinivasan, 1999], DL-Learner [Lehmann, 2009], FOIL [Quinlan,
1990], ..)

® Rule Mining: AMIE [Galarraga et al. 2015] is orders of magnitude faster than traditional ILP
methods, and consistent with the Open World Assumption in Knowledge Graphs:
® partial Completeness Assumption
® tfficient search space exploration via Mining Operators



Observable Feature Models - Path Ranking Algorithm

Path Ranking Algorithm (PRA) uses length-bounded random walks as
features between entity pairs for predicting a target relation [Lao et al. 2010].

Homer A PRA model scores a subject-object pair by a linear

parentOf parentOf function of their path features:

Abe Bart

................................................... . f(s,p,0)= ) P(s—>ol|m)Xb,

g?‘andPary melly
livesin livesIn™!

where TJs the set of all length-bounded relation
paths, and are parametegs estimated via L1,L2-

Springfield _ o _
regularised logistic regression.

Some extensions: Subgraph Features [Gardner et al. 2015], Multi-Task [wang et al. 2016]



Observable Feature Models are Interpretable

Rules extracted by AMIE+ [Galarraga et al. 2015] from the YAGO3-10 dataset [Dettmers et al. 2018]

Body = Head Confidence
hasNeighbor(X,Y) = hasNeighbor(Y, X) 0.99
isMarriedTo(X,Y) = isMarriedTo(Y, X) 0.96

hasNeighbor(X,Z) AN hasNeighbor(Z,Y) = hasNeighbor(X,Y) 0.88
isAf filiatedTo(X,Y) = playsFor(Y, X) 0.87
playsFor(X,Y) = isAf filiatedTo(Y, X) 0.75
dealsWith(X,Z) AdealsWith(Z,Y) = dealsWith(X,Y) 0.73
isConnectedTo(X,Y) = isConnectedTo(Y,X) 0.66
dealsWith(X,Z) A imports(Z,Y) = imports(X,Y) 0.61

influences(Z,X) N isInterestedIn(Z,Y) = isinterestedIn(X,Y) 0.53



Latent Feature Models

 Variables Yspo are conditionally independent given a set of latent features and
parameters O . Latent means that are not directly observed in the data, and thus
need to be estimated.

4 ~ = ~ Relationships between entities s and o can be inferred
€s € from the interactions of their latent features e e, :
A Ve
e,e, € R-
€8 || X J | oes) Jis,p,0) =J,(e; €,) f i REXR > R

R ,
@ ] The latent features inferred by these models can be
— PEH very hard to interpret.




Latent Feature Models

[ Malia Ann J [ Sasha J vXY 7
Obama Obama _ S
marriedwith(X,Y) <
parentof(X, Z2),

L)arent of

Barack |,........ L Y »| Michelle
Obama y " Obama
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lives in /
\

( Washington )

parentof(Y, Z)




Latent Feature Models

Malia Ann
Obama
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Barack
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\

parent of
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Obama o
marriedwith(X,Y) <
parentof(X, Z2),
parentof(Y, Z)

.......... ?
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\

X Not always true
>< Hard to learn from data

( Washington ) X Hard to formalise for other modalities




Latiﬂ Feature Mo¢zels

Malia Ann Sasha
Obama Obama
I L)a,rentof I
Barack |,........ L Y »| Michelle
Obama ) . Obama
\
lives in

\

[ Washington )
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Latent Feature Models - Scoring Functions

* Relationships between entities are determined by interactions between latent
features — this yields different choices for the scoring function /:R‘xR‘~>R .

RESCAL [Nickel et al. 2011]
NTN [Socher et al. 2013]
TranskE [Bordes et al. 2013]
DistMult [Yang et al. 2014]
HolE [Nickel et al. 2016]
ComplEx [Trouillon et al. 2016]

ConvE [Dettmers et al. 2017]

e;Woe, W, € R
eS
u, f <esWIl,"“‘“ +V, H + b,,) W, e RV e %4 b u, € R¢
_ _ k
e+r,—e, ) r,eR
<es’ rp’ e0> l'p E Rk
o (77 [FleT o Fle,]] ) r, € R¥
Re ((es, r, é(,)) r, € Ck

f<vec (f([e_s;r_p] *w)) W) e, r, € R\, W e R



Latent Feature Models - Scoring Functions

* Relationships between entities are determined by interactions between latent
features — this yields different choices for the scoring function /:R‘xR‘~>R .

RESCAL [Nickel et al. 2011] e;Woe, W, € R
NTN [Socher et al. 2013] u, f <esW,‘,‘~~“ +V, [:] + b,,) W, e RV e %4 b u, € R¢
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Latent Feature Models - Scoring Functions

* Relationships between entities are determined by interactions between latent
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Latent Feature Models - Scoring Functions

* Relationships between entities are determined by interactions between latent
features — this yields different choices for the scoring function /:R‘xR‘~>R .

RESCAL [Nickel et al. 2011] e;Woe, W, € R
NTN [Socher et al. 2013] u, f <esW,‘,‘~~“ +V, [ ‘ b,,) W, e RV e %4 b u, € R¢
TransE [Bordes et al. 2013] - r, € R*
DistMult [Yang et al. 2014] r, € R
HolE [Nickel et al. 2016] r (97-1 [FTe,] © Fle,] r, € R*
ComplEx [Trouillon et al. 2016] Re ((es, I, é(,)) r, € ck
ConvE [Dettmers et al. 2017] f <vec (f ( [e;T,]* w)) W) e, r, € Rk, W € R



Latent Feature Models - Predictive Accuracy

Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean
Reciprocal Rank (MRR), Hits@k. In MRR and Hits@k, for each test triple:

* Modify its subject with all the entities in the Knowledge Graph,

* Score all the triple variants, and compute the rank of the original test triple,

* Repeat for the object. VRP 1 171 1 LTSGR |{rank; < 10}|
From [Lacroix et al. ICML 2018] _ |T| 2 I"c?]]](i ) T |T|
Model WNI18 WNISRR FB15K FB15K-237 YAGO3-10
MRR H@10 MRR H@I0 MRR H@I0 MRR H@I0 MRR H®@IO0
CP-FRO 0.95 095 046 048 0.86 091 034 051 054 0.68
CP-N3 0.95 096 047 054 0.86 091 0.36 054 0.57 0.71

Reciprocal

ComplEx-FRO 0.95 096 047 054 0.86 091 035 053 0.57 0.71
ComplEx-N3 0.95 09 0.48 0.57 0.86 091 037 0.56 0.58 0.71




Latent Feature Models - Interpreting the Embeddings

Learned relation embeddings — using ComplEx with a pairwise margin-based loss
— for WordNet (left), DBpedia, and YAGO (right) ivinervini et al. ecmL 2017)

Real Part Imaginary Part

hypernym 1.0 BN N PP 1.7 BN Y _ _ Real Part Imaginary Part
hyponym 1.0 ERIRRETIA) _1_7 2930 2 musical arist 1.9 -1.7 -1.0 75 0.4 -0.8
synset domain topic of [ERIERI22FRIEY -1.6 3 musical band 1.8 [FRIRE-1.8 -1.0 25 0.3 -0.9
member of domain topic ERIAE2.2 KRA PR 1.7 PRIPAI A gassociated musical arist [EKRAEVAENARY IR 0.7 0.1 0.2 -1.5 1.5
member of domain usage -1.4-0.1 - ERPEIEY 1.8-0.6-1.3 o associated band 07 00 oo EE
synset domain usage of -1.2-0.1-2.838¢k] 7~ <] ERR-1.8-75 0.7 1.4
2 |r.1$tance hypernym -1.11.6 -1.1 Real Part Imaginary Part
T instance hyponym -1.0825] 1.5 Xl 2| ERPEIVIG 1.1 P2
g ENESll-2.4 3.2 2.7 505 3.0}2.4805-2.6 2.9 5] LSy 36 26 26 2.7 -3.1
- has part '1-50-7 2.8 30 SENPERNVNIEIER Y 3.8 [-26 26 26 -3.2|2.7 33
member holonym |2 el 2l 1.9 o pie) 26 27-24 %
member meronym 1.9 ) xS hasNeighbor 0.9 0.0 -0.0
synset domain region of -0.3[M e 1.9 -0.92.0-2.1-1.2 1.0 gh_J isMarriedTo

-3.1
member of domain region -0.3 3.2 -3.4 1.0 1.3-1.1
verb group EEIEREKK]-1.852% 0.0 -0.1 0.0 0.0 0.0 isConnectedTo
KRR R 24 0.0 0.0 -0.0 0.0 0.0

-0.7 gEXvmwAl 0.3 0.3 -0.1

derivationally related form



Latent Feature Models - Post Hoc Interpretability

[Carmona et al. 2015, Peake et al. KDD 2018, Gusmao et al. 2018]

* Generate an explanation model by training Bayesian Networks or Association
Rules on the output of a Latent Feature Model.

RECOMMENDATION MODEL EXPLANATION MODEL
used to usedto DO
Input: train Model: JEgess Output: train Model: generates Top N agc%t'ion rule
User-itemrating = Matrix Factorisation —— User-item rating =—————p  Association Rules ——— .
b redictions matrix. R hite-b recommendations per
matrix, R (black-box) P ’ (white-box) user and explanations
Rule Supp Conf Lift
filtered ,
A= B 0.4 0.7 1 filtered
A= C 0.6 0.4 0.9
Qutput: B=D | 02 | 08 | 16 Qutput:
Top N matrix factorisation Association rules for
recommendations per matrix factorisation
user predictions
User Recommendation User Recommendation Explanation
1 8 1 B A=B
2 C 2 C A=C
3 D 3 D B=D




Combining Observable and Latent Feature Models

» Additive Relational Effects (ARE) [Nickel et al. NeurIPS 2014] — combines
Observable and Latent Features in a single linear model:

ARE _ T T
fspo~ = WirMpOLrm,so T Woss pOpra so

* Knowledge Vault [Dong et al. KDD 2014] — combines the prediction of
Observable and Latent Feature Models via stacking:

slzgg = frusion (ﬁe%M» ﬁLp%M)

* Adversarial Sets [Minervini et al. UAI 2017] — incorporate observable features, in
the form of First-Order Logic Rules R, in Latent Feature Models:

LOIR)=Lry(0) + Sgljglég)LRULE(@: R)



Incorporating Rules via Adversarial Training

Idea — adversarial training process where, iteratively:

* An adversary searches for inputs where the model violates constraints

e.gx,y,zsuch that
isa(x,y) Aisa(y, z) A —isa(x, z)



Incorporating Rules via Adversarial Training

Idea — adversarial training process where, iteratively:
* An adversary searches for inputs where the model violates constraints
* The model is regularised to correct such violations.

Rule isa(X,Y)aisa(Y,Z)=isa(X,2)
Player Link Predictor

. Real Entity

. Adversarial Entity

— Consistent Link

—  Spurious Link



Incorporating Rules via Adversarial Training

Idea — adversarial training process where, iteratively:
* An adversary searches for inputs where the model violates constraints
* The model is regularised to correct such violations.

min & 4,.,(D | ©) + Amax & (S,D | ©)
® S

violation



Incorporating Rules via Adversarial Training

Idea — adversarial training process where, iteratively:
* An adversary searches for inputs where the model violates constraints

* The model is regularised to correct such violations.

min & 4,.,(D | ©) + Amax & (S,D | ©)
® S

violation

* Inputs S can be either input space or embedding space

* In most interesting cases, max has closed form solutions

* Constraints are guaranteed to hold everywhere in embedding space.




Incorporating Rules via Adversarial Training
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Incorporating Rules via Adversarial Training

78 IHEitS@B I'é'"ts@5 .Hit3@1Q

72.25
66,5 |
60,75 |

95
Transk KALE-Joint ASR-DistMult ASR-ComplEx



End-to-End Differentiable Reasoning

We can combine neural networks and symbolic models by re-
implementing classic reasoning algorithms using end-to-end
differentiable (neural) architectures:

Differentiable Architectures Logic Reasoning Based Models
®can generalise from high-dimensional, ® Can learn from small data

noisy, ambiguous inputs (e.g. sensory) ® |ssues with high-dimensional, noisy,

® \ot interpretable ambiguous inputs (e.g. images)
® ard to incorporate knowledge ® Easy to interpret, and can provide
¢ Propositional fixation [vccarthy, 1988] explanations in the form of reasoning steps

used to derive a conclusion



Reasoning in a Nutshell — Forward Chaining

* Forward Chaining — start with a list of facts, and work forward from
the antecedent P to the consequent Q iteratively.

p@) 1K) <)

p(b)
p(c)



Reasoning in a Nutshell — Forward Chaining

* Forward Chaining — start with a list of facts, and work forward from
the antecedent P to the consequent Q iteratively.

p(a),q(a)
p(b),q(b)
p(c) p(c),q(c)

- . = -
------- ---.-n
- - - -
- -
- -~
- -~
- .~.



Reasoning in a Nutshell — Backward Chaining

* Backward Chaining — start with a list of goals, and work backwards
from the consequent Q to the antecedent P to see if any data
supports any of the consequents.

q(X) < p(X)
9, You can see backward chaining as a
zggg 1 (a) | query reformulation strategy.

p(c)
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* Backward Chaining — start with a list of goals, and work backwards
from the consequent Q to the antecedent P to see if any data
supports any of the consequents.

q(X) < p(X)
a a)? . Youcan see backward chainingasa
ZIZE b% CI( ) v query reformulation strategy.
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Reasoning in a Nutshell — Backward Chaining

* Backward Chaining — start with a list of goals, and work backwards
from the consequent Q to the antecedent P to see if any data
supports any of the consequents.

q(X) < p(X)
a a)? . Youcan see backward chainingasa
ZIZE b% CI( ) v query reformulation strategy.

p(c) p(a)



Differentiable Forward Chaining - OILP ieansetal mir 2018

<
Legend
loss mm
value inputs parameters
i n

OILP uses a differentiable model of forward chaining

inference:

Ccross
entropy
predicted
true label label

* Weights of the network represent a probability
distribution over clauses

e A valuation is a vector with values in [0, 1]
representing how likely it is that each of the
ground atoms is true

conclusion
valuation

target atom

* Forward chaining is implemented by a
differentiable function that, given a valuation
vector, produces another by applying rules to it.

initial
valuatlon

clauses clause weights

 |f conclusions do not match the desired ones, the @ [ o ’
error is back-propagated to the weights.

* We can extract a readable program. @ @ m




Differentiable Forward Chaining - OILP (evansetal. jair 2018]

cycle(X) « pred(X, X)

@ @ @ pred(X,Y) < edge(X,Y)
pr‘ed(X, Y) — edge(X; Z); pred(z’ Y)

g _
®




Differentiable Forward Chaining - OILP (evansetal. jair 2018]

1-1

2 2

3 Fizz
4 - 4

5+ Buzz
6 Fizz
77

3~ 8

O Fizz
10 » Buzz



Differentiable Forward Chaining - OILP (evansetal. jair 2018]

11
2 2

3 Fizz
4 s 4 fizz(X) < zero(X)

5 = Buzz fizz(X) « fizz(Y), pred1(Y, X)

6 - Fizz pred1(X,Y) < succ(X,Z),pred2(Z,Y)
77 pred2(X,Y) < succ(X,Z),succ(Z,Y)
88

90 Fizz

10 » Buzz



Backward Chaining — Differentiable Proving

Backward Chaining

q(X) < p(X)
p(a) q(a)?
p(b) ../
p(c) T p(a)

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

Backward Chaining BUT there’s a problem..

q (X) é— p(X) gz"andPaOf (abel,bart) ‘

,

p(a) q(a)? .

. | X
p (b) ~~~*~~ l'. “\ ]
~... » P ¥ °

p (C) o p (a) grandFatherOf (abe, bart)

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

grandPaOf (abe, bart)

. NEN- SpeN.
I VA

y Sim=0.9  'sim=1 } sim =1
|

v ' V
grandFatherOf (abe, bart)

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Bgdckward Chaining — Differentiable Proving
Knowledge Base:
randPaO iiabe ,bart)

fatherOf (abe, homer)
parentOf (homer, bart)
grandFatherOf (X,Y) <
fatherOf (X, Z),
parentOf (Z,Y).

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

Knowledge Base:

fatherOf (abe, homer)
parentOf (homer, bart)
grandFatherOf (X,Y) <
fatherOf (X, Z),
parentOf (Z,Y).

randPaOf (abe, bart)
h T

/

fatherOf (abe, homer)

proof scoreS,

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

Knowledge Base:

randPaOf (abe, bart
fatherOf (abe, homer) h_ B )
parentOf (homer, bart) / 1

grandFatherOf (X,Y) < fatherOf (abe, homer) parentOf(homer,bart)

fatherOf (X,Z), e N CHL] N )

arentOf (Z,Y).
b f( ) proofscoresS, proof scores,

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

Knowledge Base:

fatherOf (abe, homer)
parentOf (homer, bart)
grandFatherOf (X,Y) <
fatherOf (X, Z2),
parentOf (Z,Y).

randPaOf (abe, bart)
h B

/

fatherOf (abe, homer) parentOf(homer,bart)

proof scoreS,

1

proof scores,

grandFatherOf (X,Y)

X/abe Y/bart Subgoals:

proof scoreSs fatherOf (abe, Z)

parentOf (Z, bart)

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

Knowledge Base:

fatherOf (abe, homer)
parentOf (homer, bart)
grandFatherOf (X,Y) <
fatherOf (X, Z2),
parentOf (Z,Y).

randPaOf (abe, bart)
h B

/

fatherOf (abe, homer) parentOf(homer,bart)

proof scoreS,

proof scoresS,

atherQ i i abe,Z)

‘\proofscoreSg fatherOf (abe, Z)
— parentOf (Z, bart)

1

proof scores,

grandFatherOf (X,Y)

X/abe Y/bart Subgoals:

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

Knowledge Base:

fatherOf (abe, homer)
parentOf (homer, bart)

randPaOf (abe, bart)
h B

grandFatherOf (X,Y) < /

fatherOf (X, Z2),
parentOf (Z,Y).

fatherOf (abe, homer) parentOf(homer,bart)

proof scores,

proof scoreS,

fatherOf (abe, Z)
Z

1

grandFatherOf (X,Y)

X/abe Y/bart Subgoals:

proof'scoresS, ‘\proofscoreSg fatherOf (abe, Z)
e

atherOf (abe, homer)

proof scoreSs

parentOf (Z, bart)

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Backward Chaining — Differentiable Proving

Knowledge Base:

i fatherOf(abe,homer)
parentOf(homer, bart)
Hl(Xs Y) — 02(X92)9 6’3(29 Y)

Training
Maximise Log-Likelihood:

Y log pKBVF(F)
Fek

- ), logp*i(F)

F~corr(F)

randPaOf (abe, bart)
h B

/

fatherOf (abe, homer) parentOf(homer,bart)

proof scoreS,

fatherOf (abe, Z)

proof scoresS,

Z

l

proof scores,

grandFatherOf (X,Y)

X/abe Y/bart Subgoals:

'\proofscoreSg fatherOf (abe, Z)
— parentOf (Z, bart)

atherOf (abe, homer)

proof scoreSs

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Differentiable Reasoning

-

Corpus | Metric Model Examples of induced rules and their confidence
| ComplEx NTP NTPA
S1 | AUC-PR 99.37+0.4 90.83+154 100.00% 0.0 | 0.90 locatedIn(X,Y) :— locatedIn(X,Z), locatedIn(Z,Y).
Countries S2 | AUC-PR  87.95+2.8 87.404+11.7 93.04 £ 0.4 | 0.63 locatedIn(X,Y) :— neighbor0f(X,Z), locatedIn(Z,Y).
S3 | AUC-PR  48.444+6.3 56.68 +17.6 77.26 £17.0 | 0.32 locatedIn(X,Y) -
neighbor0f(X,Z), neighbor0£f(Z,W), locatedIn(W,Y).
MRR 0.81 0.60 0.80 | 0.98 term15(X,Y) :—term5(Y,X)
Kinshi HITS@1 0.70 0.48 0.76 | 0.97 term18(X,Y) :—term18(Y,X)
P HITS@3 0.89 0.70 0.82 | 0.86 term4(X,Y) :— termd(Y,X)
HITS@10 0.98 0.78 0.89 | 0.73 term12(X,Y) :—terml0(X, Z), term12(Z, Y).
MRR 0.75 0.75 0.74 | 0.68 blockpositionindex(X,Y) :—blockpositionindex(Y,X).
Nations HITS@1 0.62 0.62 0.59 | 0.46 expeldiplomats(X,Y) :—negativebehavior(X,Y).
HITS @3 0.84 0.86 0.89 | 0.38 negativecomm(X,Y) :— commonblocO(X,Y).
HITS@10 0.99 0.99 0.99 | 0.38 intergovorgs3(X,Y) :— intergovorgs(Y,X).
MRR 0.89 0.88 0.93 | 0.88 interacts_with(X,Y) :—
UMLS HITS@1 0.82 0.82 0.87 interacts_with(X,Z), interacts_with(Z,Y).
HITS @3 0.96 0.92 0.98 | 0.77 isa(X,Y) :—isa(X,Z), isa(Z,Y).
HITS@10 1.00 0.97 1.00 | 0.71 derivative_of(X,Y) :—
derivative_of(X,Z), derivative_of(Z,Y).




Explainable Neural Link Prediction

Query Score S,

Proofs / Explanations

part_of(X,Y):-has_part(Y,X)

0.995
has_part (AFRICA.N.01, CONGO.N.03)
"ONGO.N.03 "A.N. — .’
part_of(CONGO.N.03, AFRICA.N.01) 0.787 part_of(X,Y):—instance_hyponym(Y, X)
: instance_hyponym(AFRICAN_COUNTRY.N.O1, CONGO.N.03)
” 0.987 hyponym(X, Y) :— hypernym(Y, X)
Z hyponym(EXTINGUISH.V.04, DECOUPLE.V.03) : hypernym(DECOUPLE.V.03, EXTINGUISH.V.04)
= 0.920 hypernym(SNUFF_OUT.V.01, EXTINGUISH.V.04)
part_of(PITUITARY.N.O1, DIENCEPHALON.N.O1) 0.995 has_part (DIENCEPHALON.N.O1, PITUITARY.N.O1)
has_part(X,Y) :—part_of(Y,X)
< 5 O ") ? ?
has_part(TEXAS.N.01, ODESSA.N.02) 0.961 part_of(ODESSAN.02, TEXASN.01)
hyponym(SKELETAL_MUSCLE, ARTICULAR_MUSCLE) 0.987 hypernym(ARTICULAR_MUSCLE, SKELETAL_MUSCLE)
deriv_related_form(REWRITE,REWRITING) 0.809 derlv—rel‘?ted—form(x’ Y) :~hypernym(Y, X)
hypernym(REVISE, REWRITE)
0.962 also_see(X,Y):—also_see(Y,X)
g also_see(TRUE.A.O1, FAITHFUL.A.O1) ‘ also_see(FAITHFUL.A.01, TRUE.A.O1)
® 0.590 also_see(CONSTANT.A.02, FAITHFUL.A.O1)
Z 0.962 also_see(VIRTUOUS.A.01, GOOD.A.03)
= also_see(GOOD.A.03, VIRTUOUS.A.01) 0.702 also_see(RIGHTEOUS.A.01, VIRTUOUS.A.01)
instance_hypernym(CHAPLIN, FILM_MAKER) 0.812 instance_hypernym(CHAPLIN, COMEDIAN)




Reasoning Over Text

* We can embed facts from the KG and facts from text in a shared embedding
space, and learn to reason over them jointly:

encoder

KB Rep.

| Text Representations ) . Rule Group p(X, Y) - q(Y, X) Rules Rule Group p(X, Y) --q(X, 2), r(Z, Y)
containedIn(River “London is located in the UK” “[X] is located in the [Y]"(X, Y) :- locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y)

Thames, UK) . . locatedIn(X, Y)
“London is standing on the

River Thames”

J \,




Reasoning Over Text

* We can embed facts from the KG and facts from text in a shared
embedding space, and learn to reason over them jointly:

Control Myself record label Jam Recordings
record label(X, Z) « p; (X, Y)

P1(X, Z) « pa2(X,Y) A p3 (Y,2)

Control Myself [...] is a song by american rapper [...] Ell
Ell cools 1989 album [...] was released by [...] Jam Recordings

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Reasoning Over Text

* We can embed facts from the KG and facts from text in a shared embedding
space, and learn to reason over them jointly:

Thrasyvoulos F.C. country Greece

/

country(X, Z) <« p; (X, Y)

P1(X, Z) «— p2(X,Y) A p3 (Y,Z)

\

Thrasyvoulos Fylis is a football club based in Fyli, Attica [...]
Fyli is a town and a municipality in the northwestern part of Attica, Greece

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]



Neuro-Symbolic Integration — Recent Advances

* Recursive Reasoning Networks [Hohenecker et al. 2018] — given a OWL RL
ontology, uses a differentiable model to update the entity and predicate
representations.

* Deep ProblLog [Manhaeve et al. NeurlPS 2018] — extends the ProblLog
probabilistic logic programming language with neural predicates that can be
evaluated on e.g. sensory data (images, speech).

* Logic Tensor Networks [Serafini et al. 2016, 2017] — fully ground First Order Logic
rules.

* AutoEncoder-like Architectures [Campero et al. 2018] — use end-to-end
differentiable reasoning in the decoder of an autoencoder-like architecture to
learn the minimal set of facts and rules that govern your domain via backprop.



References

* Maximilian Nickel, Kevin Murphy, Volker Tresp, Evgeniy Gabrilovich: A Review of Relational Machine Learning for
Knowledge Graphs. Proceedings of the IEEE 104(1): 11-33 (2016)

* Lise Getoor and Ben Taskar: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning).
The MIT Press (2007)

e Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, Wei
Zhang: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. KDD 2014: 601-610

* Denis Krompal}, Stephan Baier, Volker Tresp: Type-Constrained Representation Learning in Knowledge Graphs.
International Semantic Web Conference (1) 2015: 640-655

* L.A. Adamic and E. Adar: Friends and neighbors on the Web. Social Networks, vol. 25, no. 3, pp. 211-230, 2003

* A.-L.Barabasi and R. Albert: Emergence of Scaling in Random Networks. Science, vol. 286, no. 5439, pp. 509-512, 1999

* L. Katz: A new status index derived from sociometric analysis. Psychometrika, vol. 18, no. 1, pp. 39-43, 1953

* E.A. Leicht, P. Holme, and M. E. Newman: Vertex similarity in networks. Physical Review E, vol. 73, no. 2, p. 026120, 2006

e S.Brin and L. Page: The anatomy of a large-scale hypertextual Web search engine. Computer networks and ISDN system:s,
vol. 30, no. 1, pp. 107-117, 1998.

* D. Liben-Nowell and J. Kleinberg: The link-prediction problem for social networks. Journal of the American society for
information science and technology, vol. 58, no. 7, pp. 1019-1031, 2007.



References

W. Liu and L. Lu: Link prediction based on local random walk. EPL (Europhysics Letters), vol. 89, no. 5, p. 58007, 2010.
Stephen Muggleton: Inverting Entailment and Progol. Machine Intelligence 14 1993: 135-190
Ashwin Srinivasan: The Aleph Manual. http://www.di.ubi.pt/~jpaulo/competence/tutorials/aleph.pdf 1999

Jens Lehmann: DL-Learner: Learning Concepts in Description Logics. Journal of Machine Learning Research 10: 2639-2642
(2009)

J. R. Quinlan: Learning logical definitions from relations. Machine Learning, vol. 5, pp. 239-266, 1990

Ni Lao, Tom M. Mitchell, William W. Cohen: Random Walk Inference and Learning in A Large Scale Knowledge
Base. EMNLP 2011: 529-539

Luis Galarraga, Christina Teflioudi, Katja Hose, Fabian M. Suchanek: Fast rule mining in ontological knowledge bases with
AMIE+. VLDB J. 24(6): 707-730 (2015)

Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel: A Three-Way Model for Collective Learning on Multi-Relational Data.
ICML 2011: 809-816

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, Oksana Yakhnenko: Translating Embeddings for
Modeling Multi-relational Data. NIPS 2013: 2787-2795

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng: Embedding Entities and Relations for Learning and
Inference in Knowledge Bases. CoRR abs/1412.6575 (2014)



References

* Maximilian Nickel, Lorenzo Rosasco, Tomaso A. Poggio: Holographic Embeddings of Knowledge Graphs. AAAI 2016: 1955-1961

 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, Guillaume Bouchard: Complex Embeddings for Simple Link
Prediction. ICML 2016: 2071-2080

* Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, Sebastian Riedel: Convolutional 2D Knowledge Graph Embeddings. AAAI
2018:1811-1818

* Timothée Lacroix, Nicolas Usunier, Guillaume Obozinski: Canonical Tensor Decomposition for Knowledge Base Completion.
ICML 2018: 2869-2878

* Pasquale Minervini, Luca Costabello, Emir Munoz, Vit Novacek, Pierre-Yves Vandenbussche: Regularizing Knowledge Graph
Embeddings via Equivalence and Inversion Axioms. ECML/PKDD (1) 2017: 668-683

e Pasquale Minervini, Thomas Demeester, Tim Rocktaschel, Sebastian Riedel: Adversarial Sets for Regularising Neural Link
Predictors. UAI 2017

* Maximilian Nickel, Xueyan Jiang, Volker Tresp: Reducing the Rank in Relational Factorization Models by Including Observable
Patterns. NIPS 2014: 1179-1187

* Richard Evans, Edward Grefenstette: Learning Explanatory Rules from Noisy Data. J. Artif. Intell. Res. 61: 1-64 (2018)
* Tim Rocktaschel, Sebastian Riedel: End-to-end Differentiable Proving. NeurlIPS 2017: 3791-3803
 Patrick Hohenecker, Thomas Lukasiewicz: Ontology Reasoning with Deep Neural Networks. CoRR abs/1808.07980 (2018)



References

e Pasquale Minervini, Matko Bosnjak, Tim Rocktaschel, Sebastian Riedel: Towards Neural Theorem Proving at Scale. CoRR
abs/1807.08204 (2018)

* Leon Weber, Pasquale Minervini, Jannes Minchmeyer, Ulf Leser, Tim Rocktdaschel: NLProlog: Reasoning with Weak Unification for
Question Answering in Natural Language. ACL (1)2019: 6151-6161

* Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt: DeepProbLog: Neural Probabilistic
Logic Programming. NeurlPS 2018: 3753-3763

* Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge.
CoRR abs/1606.04422 (2016)

* |van Donadello, Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks for Semantic Image Interpretation. |JCAI 2017:
1596-1602

e Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, Sebastian Riedel: Logical Rule Induction and Theory Learning Using
Neural Theorem Proving. CoRRabs/1809.02193

* Georgina Peake, Jun Wang: Explanation Mining: Post Hoc Interpretability of Latent Factor Models for Recommendation Systems.
KDD 2018: 2060-2069

e Arthur Colombini Gusmao, Alvaro Henrique Chaim Correia, Glauber De Bona, Fabio Gagliardi Cozman: Interpreting Embedding
Models of Knowledge Bases: A Pedagogical Approach. CoRR abs/1806.09504 (2018)



lvan Sanchez Carmona, Sebastian Riedel: Extracting Interpretable Models from Matrix Factorization Models. CoCo@NIPS
2015

Vicente Ivan Sanchez Carmona, Tim Rocktaschel, Sebastian Riedel, Sameer Singh: Towards Extracting Faithful and
Descriptive Representations of Latent Variable Models. AAAI Spring Symposia 2015

Tareq B. Malas et al.: Drug prioritization using the semantic properties of a knowledge graph. Nature 2019
Freddy Lecue: On The Role of Knowledge Graphs in Explainable Al. Semantic Web Journal 2019

Cataldo Musto, Fedelucio Narducci, Pasquale Lops, Marco de Gemmis, Giovanni Semeraro: Linked open data-based
explanations for transparent recommender systems. Int. J. Hum.-Comput. Stud. 121: 93-107 (2019)

Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Davide Romito, Markus Zanker: Linked open data to support
content-based recommender systems. I-SEMANTICS 2012: 1-8

Vito Claudio Ostuni, Tommaso Di Noia, Eugenio Di Sciascio, Roberto Mirizzi: Top-N recommendations from implicit
feedback leveraging linked open data. RecSys 2013: 85-92

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba: Network Dissection: Quantifying Interpretability of
Deep Visual Representations. CVPR 2017: 3319-3327



Explaining Privacy Risks



Big data “proxies” of social life

Relationships & social ties

11125002"74135%0

Desires, opinions, sentiments
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IKIPEDIA
The Free Encyclopedia




Big Data Analytics & Social Mining
T

The main tool for a
Data Scientist to
measure,
understand,
and possibly predict
human behavior




legal aspects and social impact of data science




Data Protection & Privacy

* A fundamental human right

* Any individual has the right to a private life, to be autonomous, to
control information about yourself

* Any individual has the right to privacy protection
* The right to be directly or indirectly non-identifiable

* Any data processing (es: data mining, data analysis, Al, ML, ...) on this
kind of data can bring to individual privacy violation



Privacy by Design & Risk Assessment

)

General

X Data

% Protection
Regulation

* ¥ X



Privacy Risk Assessment Framework for Data Sharing

DO DA
Data Owner Data Analyst

| I |
| | 1 |
| o : | aﬁ |
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F. Pratesi, A. Monreale, R. Trasarti, F. Giannotti, D. Pedreschi, T. Yanagihara: PRUDEnNnce: a System
for Assessing Privacy Risk vs Utility in Data Sharing Ecosystems. Transactions on Data Privacy
11(2): 139-167 (2018)



Privacy Risk Assessment Framework for Data Sharing

e Data Catalog

* For each:
 Data Format, i.e., the data needed for the service
* Risk Assessment Setting, i.e., the set of pre-
processing and privacy attacks 25
* The Data Catalog provides:

* Quantification of Privacy Risk, i.e., the evaluation
of the real risk of re-identification

* Quantification of Data Quality, i.e., the quality
level we can achieve with private data, compared
with the data quality of original data.




Privacy Risk Prediction

Privacy risk Risk - label

INPUT

component

D D
Prediction Explanation
component component

Predicted privacy risk

Explanation




Sequence Data

Retail data




Privacy Risk Component

TASK: it provides the target output for the machine learning models.

(Seq1l, Risk1)
(Seq2, Risk2)

input

output

v Simulation of a

privacy attack
(Segn, Riskn)

Training dataset




Predictor Component

TASK: it predicts the privacy risk for each sequence.

Two approaches:

T~

Feature-based approach

The input data is composed of
features extracted from the
input sequence.

Sequence-based approach

The input data is composed of

sequences.

Long Short Term Memory network (LSTM)




Explanation Component

TASK: it provides an explanation about the reasoning
of the machine learning model.

R .

Classifier Explanation I Feature importance
+ k model w.rt. a base value
Training dataset —_——— J

~_



SHAP: Shapley Additive Explanation

 Game Theory: Branch of micro-economics dealing with interactions
between decision-making agents.

* Cooperative Game Theory: Sub-field of game theory where players
are “working together” to achieve a common goal.

* In Machine Learning:
* game is the prediction task for a single instance

* gain is the actual prediction for this instance minus the average prediction of
all instances

* players are the feature values of the instance, which collaborate to receive
the gain



Shapley Value

* Key Idea: Measure each player’s contribution to the team’s outcome.

* Heuristic: If we remove a player from the team and the outcome
doesn’t change, then the player wasn’t useful.



Shapley Value

Intuition

For each player compute each outcome where the player was present
and compare it to the outcome where the player was not present

For each feature i:

* Average of all possible differences between predictions of the
model without feature i, and the ones with feature i

 Computation of each coalition with feature i



SHAP Explanation

| Retail data
higher Z lower
output value base value
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Visualizing Explanations



Transparent Model Visualization

* Representation of model on visual space

1st, 2nd class survived

* Pro
* Vision at a glance

e Reduction of complexity through interaction
* Exploits visual clues to highlight relevant

female Pclass? ‘

3\ not survived

rd class
sex?

1 <14 ived
patterns and properties \ S 7 | sunive
* Cons | ~__

> 14 not survived
 Complex visualization when model is too large

* Low efficiency of visual space occupancy (e.g.
decision trees)



Model Explanation Problem to Visualization

In case of BB models, derive an interpretable/transparent box to be visualized.

TEST
INSTANCES

BLACK BOX

X ={Xq, o) X}

INTERPRETABLE

PREDICTOR

!

GLOBAL| [—»

R, : IFOutlook = Sunny) AND
(Windy= False) THEN Play=Yes

R, : IFOutlook = Sunny) AND
(Windy= True) THEN Play=No

R, : IHOutlook = Overcast)

THEN Play=Yes

R, : IHOutlook = Rainy) AND
(Humidity= High) THEN Play=No

R; : IFOutlook = Rainy) AND
(Humidity= Normal) THEN Play=Yes

Visualization of
Transparent Model




Decision Tree and Rules Visualization
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Yao Ming, Huamin Qu, and Enrico Bertini. RuleMatrix: Visualizing
and Understanding Classifiers with Rules. IEEE Transactions on
Visualization and Computer Graphics, 2019



Outcome Explanation Problem to Visualization

Provide an interpretable outcome, i.e., an explanation for the outcome of the black
box for a single instance.

INTERPRETABLE
TEST R,: IF(Outlook = Sunny) AND
INSTANCE BLACK BOX PRIE([))(lzCA'II:OR . (Windy= False) THEN Play=Yes

X




Feature Relevance on the Input Space

Integrated Gradient Edge
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Feature Relevance on the Input Space

Election is a 1999 American comedy-drama film directed and written by Alexander Payne and adapted by him and Jim
Taylor from Tom Perrotta's 1998 novel of the same title. The plot revolves around a high school election and satirizes both suburban high school

Sentence : -
level life and pOlIUCS. T'he film stars Matthew Broderick as Jim McAllister, a popular high school social studies teacher in suburban Omaha, Nebraska, and Reese Witherspoon as Tracj
attractiveness Flick, around the time of the school's student body election. When Tracy qualifies to run for class president, McAllister believes she does not deserve the title and tries his best to
User stop her from winning. Election opened to acclaim from critics, who praised its writing and direction. The film received an Academy Award nomination for Best
156 Adapted Screenplay, a Golden Globe nomination for Witherspoon in the Best Actress category, and the Independent Spirit Award for Best Film in 1999.
Word level o o . ) ‘ _ ‘ ‘ ) - _ ‘
attractiveness Election is a 1999 American comedy—dl‘ama film directed and written by Alexander Payne and adapted by him and Jim Taylor from Tom Perrotta's 1998 novel of the same title.
Cast member . .
attractiveness Alexander Payne, Reese Witherspoon, Matthew Broderick,
Election is a 1999 American comedy dlanla film dnected and written by Alexander Payne and adapted by him and Jlm Ta\101 from Tom Perrotta's 1998
novel of the same title. The plot revolves around a high school election and satirizes both suburban high school life and politics. The film stars hew Broderic 1 McAlliste
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Word level The film received an Academy Award nomination for Best Adapted Screenplay. a Golden Globe nomination for Witherspoon in the Best Actress category. and the Independent
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Cast member . )
attractiveness | Alexander Payne, Reese Witherspoon, Matthew Broderick.

L. Hu, S. Jian, L. Cao, and Q. Chen. Interpretable recommendation via attraction

modeling: Learning multilevel attractiveness over multimodal movie contents.
[JCAI-ECAI, 2018.



Feature Properties and Relevance

Feature
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Label: setosa
Probability: 1
Explanation Fit: 0.67

Case: 4

Label: setosa
Probability: 1
Explanation Fit: 0.67
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Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why

should i trust you?: Explaining the predictions of any classifier. KDD.
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Gosiewska A, Biecek P (2019). “iBreakDown: Uncertainty of Model
Explanations for Non-additive Predictive Models.” arXiv:1903.11420,



Model Inspection Problem to Visualization

Provide a representation (visual or textual) for understanding either how the
black box model works or why the black box returns certain predictions more
likely than others.

TesT | 5| BlLACKBOX [—|  WBUAL o, °

INSTANCES REPRENTATION

X =1{Xy, «uey X}




Sensitivity Measures
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Linked display for property browsing

Interactive Model Studio

ap1 v

https://github.com/ModelOriented/modelStudio



Summary

e Efficient explanation through visual techniques

* Visualization strategies to reduce complexity of
model visualization and multi-dimensionality

* Visual clues
* Interaction vs complexity

* Linked displays for multi-dimensional exploration



Conclusions
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Take-Home Messages

* Explainable Al is motivated by real-world application of Al
* Not a new problem — a reformulation of past research challenges in Al

* Multi-disciplinary: multiple Al fields, HCI, social sciences (multiple
definitions)
* In Machine Learning:

* Transparent design or post-hoc explanation?
e Background knowledge matters!

* We can scale-up symbolic reasoning by coupling it with representation
learning on graphs.

* In Al (in general): many interesting / complementary approaches



Open The Black Box!

* To empower individual against undesired effects of
automated decision making

* To reveal and protect new vulnerabilities
e To implement the “right of explanation”

e To improve industrial standards for developing Al-
powered products, increasing the trust of companies
and consumers

* To help people make better decisions
* To align algorithms with human values
 To preserve (and expand) human autonomy




Open Research Questions

T
T
T

nere is no agreement on what an explanation is
nere is not a formalism for explanations

nere is ho work that seriously addresses the

problem of quantifying the grade of
comprehensibility of an explanation for humans

* Is it possible to join local explanations to build a
globally interpretable model?

* What happens when black box make decision in
presence of latent features?

* What if there is a cost for querying a black box?




Future Challenges

* Creating awareness! Success stories!
* Foster multi-disciplinary collaborations in XAl research.
* Help shaping industry standards, legislation.

* More work on transparent design.

* Investigate symbolic and sub-symbolic reasoning.

* Evaluation:
* We need benchmark - Shall we start a task force?
* We need an XAl challenge - Anyone interested?
* Rigorous, agreed upon, human-based evaluation protocols
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